Dimitrov, S. I. Primes of the form \([n^c]\) with square-free \(n\). (English) Zbl 07906287 Ukr. Math. J. 76, No. 2, 243-253 (2024) and Ukr. Mat. Zh. 76, No. 2, 224-233 (2024). MSC: 11N05 11N13 11L07 11N36 PDFBibTeX XMLCite \textit{S. I. Dimitrov}, Ukr. Math. J. 76, No. 2, 243--253 (2024; Zbl 07906287) Full Text: DOI arXiv
Ren, Xiumin; Zhang, Qingqing; Zhang, Rui Roth-type theorem for quadratic system in Piatetski-Shapiro primes. (English) Zbl 1533.11027 J. Number Theory 257, 1-23 (2024). MSC: 11B30 11P32 11L20 11D09 PDFBibTeX XMLCite \textit{X. Ren} et al., J. Number Theory 257, 1--23 (2024; Zbl 1533.11027) Full Text: DOI
Zhai, W.-G.; Zhao, Y.-T. On a Piatetski-Shapiro analog problem over almost-primes. (English) Zbl 1538.11162 Acta Math. Hung. 170, No. 2, 616-632 (2023). Reviewer: Olivier Ramaré (Marseille) MSC: 11N36 11L07 PDFBibTeX XMLCite \textit{W. G. Zhai} and \textit{Y. T. Zhao}, Acta Math. Hung. 170, No. 2, 616--632 (2023; Zbl 1538.11162) Full Text: DOI
Wang, Hui; Zhang, Yu On the divisor function over Piatetski-Shapiro sequences. (English) Zbl 07729527 Czech. Math. J. 73, No. 2, 613-620 (2023). MSC: 11B83 11L07 11N25 11N37 PDFBibTeX XMLCite \textit{H. Wang} and \textit{Y. Zhang}, Czech. Math. J. 73, No. 2, 613--620 (2023; Zbl 07729527) Full Text: DOI
Guo, Victor Zhenyu; Li, Jinjiang; Zhang, Min Piatetski-Shapiro primes in arithmetic progressions. (English) Zbl 1525.11099 Ramanujan J. 60, No. 3, 677-692 (2023). Reviewer: László Tóth (Pécs) MSC: 11N05 11L07 11B25 11N25 PDFBibTeX XMLCite \textit{V. Z. Guo} et al., Ramanujan J. 60, No. 3, 677--692 (2023; Zbl 1525.11099) Full Text: DOI
Li, X.; Zhai, W. The three primes theorem with primes in the intersection of two Piatetski-Shapiro sets. (English) Zbl 1524.11180 Acta Math. Hung. 168, No. 1, 228-245 (2022). Reviewer: László Tóth (Pécs) MSC: 11P32 11L07 PDFBibTeX XMLCite \textit{X. Li} and \textit{W. Zhai}, Acta Math. Hung. 168, No. 1, 228--245 (2022; Zbl 1524.11180) Full Text: DOI
Li, Jinjiang; Zhang, Min; Xue, Fei An additive problem over Piatetski-Shapiro primes and almost-primes. (English) Zbl 1537.11112 Ramanujan J. 57, No. 4, 1307-1333 (2022). MSC: 11L07 11L20 11P32 11N36 PDFBibTeX XMLCite \textit{J. Li} et al., Ramanujan J. 57, No. 4, 1307--1333 (2022; Zbl 1537.11112) Full Text: DOI arXiv
Guo, Victor Zhenyu; Qi, Jinyun A generalization of Piatetski-Shapiro sequences. (English) Zbl 1527.11019 Taiwanese J. Math. 26, No. 1, 33-47 (2022). Reviewer: Lukas Spiegelhofer (Leoben) MSC: 11B83 11L07 11N13 PDFBibTeX XMLCite \textit{V. Z. Guo} and \textit{J. Qi}, Taiwanese J. Math. 26, No. 1, 33--47 (2022; Zbl 1527.11019) Full Text: DOI
Guo, Victor Zhenyu Almost primes in Piatetski-Shapiro sequences. (English) Zbl 1525.11027 AIMS Math. 6, No. 9, 9536-9546 (2021). MSC: 11B83 11L07 11N05 PDFBibTeX XMLCite \textit{V. Z. Guo}, AIMS Math. 6, No. 9, 9536--9546 (2021; Zbl 1525.11027) Full Text: DOI OA License
Huang, Jing; Zhai, Wenguang; Zhang, Deyu Diophantine inequalities over Piatetski-Shapiro primes. (English) Zbl 1480.11088 Front. Math. China 16, No. 3, 749-770 (2021). Reviewer: István Gaál (Debrecen) MSC: 11J25 11L03 11P32 11P55 PDFBibTeX XMLCite \textit{J. Huang} et al., Front. Math. China 16, No. 3, 749--770 (2021; Zbl 1480.11088) Full Text: DOI
Sivaraman, Jyothsnaa Primitive roots for Pjateckii-Šapiro primes. (English. French summary) Zbl 1472.11025 J. Théor. Nombres Bordx. 33, No. 1, 83-94 (2021). MSC: 11A07 11N05 11N35 11N36 PDFBibTeX XMLCite \textit{J. Sivaraman}, J. Théor. Nombres Bordx. 33, No. 1, 83--94 (2021; Zbl 1472.11025) Full Text: DOI
Song, Yanbo A note on primes of the form \(\lfloor\alpha p+\beta\rfloor\). (English) Zbl 1470.11256 J. Number Theory 225, 1-17 (2021). Reviewer: Luis Gallardo (Brest) MSC: 11P32 11P05 PDFBibTeX XMLCite \textit{Y. Song}, J. Number Theory 225, 1--17 (2021; Zbl 1470.11256) Full Text: DOI
Li, Taiyu; Liu, Huafeng Diophantine approximation over Piatetski-Shapiro primes. (English) Zbl 1439.11160 J. Number Theory 211, 184-198 (2020). Reviewer: István Gaál (Debrecen) MSC: 11J25 11L03 11P32 11P55 PDFBibTeX XMLCite \textit{T. Li} and \textit{H. Liu}, J. Number Theory 211, 184--198 (2020; Zbl 1439.11160) Full Text: DOI
Kumchev, Angel; Petrov, Zhivko A hybrid of two theorems of Piatetski-Shapiro. (English) Zbl 1448.11128 Monatsh. Math. 189, No. 2, 355-376 (2019). Reviewer: István Gaál (Debrecen) MSC: 11J25 11L20 11P32 11P55 PDFBibTeX XMLCite \textit{A. Kumchev} and \textit{Z. Petrov}, Monatsh. Math. 189, No. 2, 355--376 (2019; Zbl 1448.11128) Full Text: DOI arXiv
Lu, Ya Ming An additive problem on Piatetski-Shapiro primes. (English) Zbl 1446.11185 Acta Math. Sin., Engl. Ser. 34, No. 2, 255-264 (2018). MSC: 11P32 11N36 PDFBibTeX XMLCite \textit{Y. M. Lu}, Acta Math. Sin., Engl. Ser. 34, No. 2, 255--264 (2018; Zbl 1446.11185) Full Text: DOI
Li, Jinjiang; Zhang, Min Hua’s theorem with the primes in Piatetski-Shapiro prime sets. (English) Zbl 1428.11177 Int. J. Number Theory 14, No. 1, 193-220 (2018). MSC: 11P32 11P55 11L07 PDFBibTeX XMLCite \textit{J. Li} and \textit{M. Zhang}, Int. J. Number Theory 14, No. 1, 193--220 (2018; Zbl 1428.11177) Full Text: DOI arXiv
Mirek, Mariusz Roth’s theorem in the Piatetski-Shapiro primes. (English) Zbl 1337.11069 Rev. Mat. Iberoam. 31, No. 2, 617-656 (2015). Reviewer: László Tóth (Pécs) MSC: 11P32 11L03 PDFBibTeX XMLCite \textit{M. Mirek}, Rev. Mat. Iberoam. 31, No. 2, 617--656 (2015; Zbl 1337.11069) Full Text: DOI arXiv
Mirek, Mariusz \(\ell^p(\mathbb Z)\)-boundedness of discrete maximal functions along thin subsets of primes and pointwise ergodic theorems. (English) Zbl 1351.37029 Math. Z. 279, No. 1-2, 27-59 (2015). MSC: 37A30 37A45 PDFBibTeX XMLCite \textit{M. Mirek}, Math. Z. 279, No. 1--2, 27--59 (2015; Zbl 1351.37029) Full Text: DOI arXiv
Xi, Ping Quadratic residues and non-residues for infinitely many Piatetski-Shapiro primes. (English) Zbl 1300.11010 Acta Math. Sin., Engl. Ser. 29, No. 3, 515-522 (2013). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11A15 11N05 11N69 PDFBibTeX XMLCite \textit{P. Xi}, Acta Math. Sin., Engl. Ser. 29, No. 3, 515--522 (2013; Zbl 1300.11010) Full Text: DOI arXiv
Wang, Xinna; Cai, Yingchun An additive problem involving Piatetski-Shapiro primes. (English) Zbl 1231.11122 Int. J. Number Theory 7, No. 5, 1359-1378 (2011). Reviewer: Florian Luca (Morelia) MSC: 11P32 11N36 PDFBibTeX XMLCite \textit{X. Wang} and \textit{Y. Cai}, Int. J. Number Theory 7, No. 5, 1359--1378 (2011; Zbl 1231.11122) Full Text: DOI
Rivat, Joël; Sargos, Patrick Nombres premiers de la forme \([n^c]\). (Prime numbers of the form \([n^c]\)). (French) Zbl 0970.11035 Can. J. Math. 53, No. 2, 414-433 (2001). Reviewer: Dieter Leitmann (Garbsen) MSC: 11N05 11L07 11L20 PDFBibTeX XMLCite \textit{J. Rivat} and \textit{P. Sargos}, Can. J. Math. 53, No. 2, 414--433 (2001; Zbl 0970.11035) Full Text: DOI
Zhai, Wenguang On the \(k\)-dimensional Piatetski-Shapiro prime number theorem. (English) Zbl 0964.11040 Sci. China, Ser. A 42, No. 11, 1173-1183 (1999). Reviewer: G.Kolesnik (Los Angeles) MSC: 11N05 PDFBibTeX XMLCite \textit{W. Zhai}, Sci. China, Ser. A 42, No. 11, 1173--1183 (1999; Zbl 0964.11040) Full Text: DOI
Kumchev, Angel On the Piatetski-Shapiro-Vinogradov theorem. (English) Zbl 0890.11029 J. Théor. Nombres Bordx. 9, No. 1, 11-23 (1997). Reviewer: G.Kolesnik (Los Angeles) MSC: 11P32 PDFBibTeX XMLCite \textit{A. Kumchev}, J. Théor. Nombres Bordx. 9, No. 1, 11--23 (1997; Zbl 0890.11029) Full Text: DOI Numdam EuDML EMIS