Haghighi, Donya; Abbasbandy, Saeid; Shivanian, Elyas; Dong, Leiting; Atluri, Satya N. The fragile points method (FPM) to solve two-dimensional hyperbolic telegraph equation using point stiffness matrices. (English) Zbl 07439996 Eng. Anal. Bound. Elem. 134, 11-21 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{D. Haghighi} et al., Eng. Anal. Bound. Elem. 134, 11--21 (2022; Zbl 07439996) Full Text: DOI OpenURL
Ashyralyev, Allaberen; Turk, Koray; Agirseven, Deniz On the stability of the time delay telegraph equation with Neumann condition. (English) Zbl 07444039 Ashyralyev, Allaberen (ed.) et al., Functional analysis in interdisciplinary applications II. Collected papers based on the presentations at the mini-symposium, held as part of the fourth international conference on analysis and applied mathematics, ICAAM, September 6–9, 2018. Cham: Springer. Springer Proc. Math. Stat. 351, 201-211 (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{A. Ashyralyev} et al., Springer Proc. Math. Stat. 351, 201--211 (2021; Zbl 07444039) Full Text: DOI OpenURL
Atta, A. G.; Abd-Elhameed, W. M.; Moatimid, G. M.; Youssri, Y. H. Shifted fifth-kind Chebyshev Galerkin treatment for linear hyperbolic first-order partial differential equations. (English) Zbl 1476.65235 Appl. Numer. Math. 167, 237-256 (2021). MSC: 65M60 65M70 65M12 65M15 65F05 41A50 PDF BibTeX XML Cite \textit{A. G. Atta} et al., Appl. Numer. Math. 167, 237--256 (2021; Zbl 1476.65235) Full Text: DOI OpenURL
Yaseen, Muhammad; Abbas, Muhammad An efficient cubic trigonometric B-spline collocation scheme for the time-fractional telegraph equation. (English) Zbl 1474.65399 Appl. Math., Ser. B (Engl. Ed.) 35, No. 3, 359-378 (2020). MSC: 65M70 65Z05 65D05 65D07 35B35 26A33 35R11 65M12 65M06 PDF BibTeX XML Cite \textit{M. Yaseen} and \textit{M. Abbas}, Appl. Math., Ser. B (Engl. Ed.) 35, No. 3, 359--378 (2020; Zbl 1474.65399) Full Text: DOI OpenURL
Zhou, Yunxu; Qu, Wenzhen; Gu, Yan; Gao, Hongwei A hybrid meshless method for the solution of the second order hyperbolic telegraph equation in two space dimensions. (English) Zbl 1464.65155 Eng. Anal. Bound. Elem. 115, 21-27 (2020). MSC: 65M70 35L20 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Eng. Anal. Bound. Elem. 115, 21--27 (2020; Zbl 1464.65155) Full Text: DOI OpenURL
Hosseininia, M.; Heydari, M. H. Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag-Leffler non-singular kernel. (English) Zbl 1448.65103 Chaos Solitons Fractals 127, 389-399 (2019). MSC: 65M06 35R11 26A33 PDF BibTeX XML Cite \textit{M. Hosseininia} and \textit{M. H. Heydari}, Chaos Solitons Fractals 127, 389--399 (2019; Zbl 1448.65103) Full Text: DOI OpenURL
Doha, E. H.; Hafez, R. M.; Youssri, Y. H. Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations. (English) Zbl 1442.65290 Comput. Math. Appl. 78, No. 3, 889-904 (2019). MSC: 65M70 65M60 35L50 PDF BibTeX XML Cite \textit{E. H. Doha} et al., Comput. Math. Appl. 78, No. 3, 889--904 (2019; Zbl 1442.65290) Full Text: DOI OpenURL
Akram, Tayyaba; Abbas, Muhammad; Ismail, Ahmad Izani; Ali, Norhashidah Hj. M.; Baleanu, Dumitru Extended cubic B-splines in the numerical solution of time fractional telegraph equation. (English) Zbl 1459.65193 Adv. Difference Equ. 2019, Paper No. 365, 20 p. (2019). MSC: 65M70 35R11 26A33 65M12 65M06 PDF BibTeX XML Cite \textit{T. Akram} et al., Adv. Difference Equ. 2019, Paper No. 365, 20 p. (2019; Zbl 1459.65193) Full Text: DOI OpenURL
Youssri, Y. H.; Hafez, R. M. Exponential Jacobi spectral method for hyperbolic partial differential equations. (English) Zbl 1452.35088 Math. Sci., Springer 13, No. 4, 347-354 (2019). MSC: 35L04 65M70 PDF BibTeX XML Cite \textit{Y. H. Youssri} and \textit{R. M. Hafez}, Math. Sci., Springer 13, No. 4, 347--354 (2019; Zbl 1452.35088) Full Text: DOI OpenURL
Xiang, Qiaomin; Yang, Qigui Chaotic oscillations of a linear hyperbolic PDE with a general nonlinear boundary condition. (English) Zbl 1437.35448 J. Math. Anal. Appl. 472, No. 1, 94-111 (2019). MSC: 35L20 37D45 PDF BibTeX XML Cite \textit{Q. Xiang} and \textit{Q. Yang}, J. Math. Anal. Appl. 472, No. 1, 94--111 (2019; Zbl 1437.35448) Full Text: DOI OpenURL
Az-Zo’bi, Emad A reliable analytic study for higher-dimensional telegraph equation. (English) Zbl 1427.65317 J. Math. Comput. Sci., JMCS 18, No. 4, 423-429 (2018). MSC: 65M99 35C05 35L25 PDF BibTeX XML Cite \textit{E. Az-Zo'bi}, J. Math. Comput. Sci., JMCS 18, No. 4, 423--429 (2018; Zbl 1427.65317) Full Text: DOI OpenURL
Kamran; Uddin, Marjan; Ali, Amjad On the approximation of time-fractional telegraph equations using localized kernel-based method. (English) Zbl 1448.65183 Adv. Difference Equ. 2018, Paper No. 305, 14 p. (2018). MSC: 65M70 35R11 26A33 44A10 PDF BibTeX XML Cite \textit{Kamran} et al., Adv. Difference Equ. 2018, Paper No. 305, 14 p. (2018; Zbl 1448.65183) Full Text: DOI OpenURL
Hafez, Ramy M. Numerical solution of linear and nonlinear hyperbolic telegraph type equations with variable coefficients using shifted Jacobi collocation method. (English) Zbl 1404.65196 Comput. Appl. Math. 37, No. 4, 5253-5273 (2018). MSC: 65M70 35L20 33C45 35Q60 35Q79 PDF BibTeX XML Cite \textit{R. M. Hafez}, Comput. Appl. Math. 37, No. 4, 5253--5273 (2018; Zbl 1404.65196) Full Text: DOI OpenURL
Alharbi, Weam; Petrovskii, Sergei Critical domain problem for the reaction-telegraph equation model of population dynamics. (English) Zbl 1394.92101 Mathematics 6, No. 4, Paper No. 59, 15 p. (2018). MSC: 92D25 35Q92 PDF BibTeX XML Cite \textit{W. Alharbi} and \textit{S. Petrovskii}, Mathematics 6, No. 4, Paper No. 59, 15 p. (2018; Zbl 1394.92101) Full Text: DOI OpenURL
Xu, Xiaoyong; Xu, Da Legendre wavelets direct method for the numerical solution of time-fractional order telegraph equations. (English) Zbl 1453.65369 Mediterr. J. Math. 15, No. 1, Paper No. 27, 33 p. (2018). MSC: 65M70 35R11 65T60 65M12 65M15 PDF BibTeX XML Cite \textit{X. Xu} and \textit{D. Xu}, Mediterr. J. Math. 15, No. 1, Paper No. 27, 33 p. (2018; Zbl 1453.65369) Full Text: DOI OpenURL
Wang, Ying; Mei, Liquan Generalized finite difference/spectral Galerkin approximations for the time-fractional telegraph equation. (English) Zbl 1422.35179 Adv. Difference Equ. 2017, Paper No. 281, 16 p. (2017). MSC: 35R11 65M06 26A33 65M70 65M12 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{L. Mei}, Adv. Difference Equ. 2017, Paper No. 281, 16 p. (2017; Zbl 1422.35179) Full Text: DOI OpenURL
Mardani, A.; Hooshmandasl, M. R.; Hosseini, M. M.; Heydari, M. H. Moving least squares (MLS) method for the nonlinear hyperbolic telegraph equation with variable coefficients. (English) Zbl 1404.65199 Int. J. Comput. Methods 14, No. 3, Article ID 1750026, 19 p. (2017). MSC: 65M70 PDF BibTeX XML Cite \textit{A. Mardani} et al., Int. J. Comput. Methods 14, No. 3, Article ID 1750026, 19 p. (2017; Zbl 1404.65199) Full Text: DOI OpenURL
Boyadjiev, L.; Luchko, Yu. The neutral-fractional telegraph equation. (English) Zbl 1398.35262 Math. Model. Nat. Phenom. 12, No. 6, 51-67 (2017). MSC: 35R11 35C05 35E05 35L05 45K05 PDF BibTeX XML Cite \textit{L. Boyadjiev} and \textit{Yu. Luchko}, Math. Model. Nat. Phenom. 12, No. 6, 51--67 (2017; Zbl 1398.35262) Full Text: DOI OpenURL
Ma, Wentao; Zhang, Baowen; Ma, Hailong A meshless collocation approach with barycentric rational interpolation for two-dimensional hyperbolic telegraph equation. (English) Zbl 1410.65399 Appl. Math. Comput. 279, 236-248 (2016). MSC: 65M70 35L20 PDF BibTeX XML Cite \textit{W. Ma} et al., Appl. Math. Comput. 279, 236--248 (2016; Zbl 1410.65399) Full Text: DOI OpenURL
Asgari, M.; Ezzati, R.; Allahviranloo, T. Numerical solution of time-fractional order telegraph equation by Bernstein polynomials operational matrices. (English) Zbl 1400.65052 Math. Probl. Eng. 2016, Article ID 1683849, 6 p. (2016). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{M. Asgari} et al., Math. Probl. Eng. 2016, Article ID 1683849, 6 p. (2016; Zbl 1400.65052) Full Text: DOI OpenURL
He, Dongdong An unconditionally stable spatial sixth-order CCD-ADI method for the two-dimensional linear telegraph equation. (English) Zbl 1350.65088 Numer. Algorithms 72, No. 4, 1103-1117 (2016). Reviewer: Qin Meng Zhao (Beijing) MSC: 65M06 65M12 35L20 PDF BibTeX XML Cite \textit{D. He}, Numer. Algorithms 72, No. 4, 1103--1117 (2016; Zbl 1350.65088) Full Text: DOI OpenURL
Kew, Lee Ming; Ali, Norhashidah Hj. Mohd New explicit group iterative methods in the solution of three dimensional hyperbolic telegraph equations. (English) Zbl 1349.65309 J. Comput. Phys. 294, 382-404 (2015). MSC: 65M06 65M12 65M22 PDF BibTeX XML Cite \textit{L. M. Kew} and \textit{N. Hj. M. Ali}, J. Comput. Phys. 294, 382--404 (2015; Zbl 1349.65309) Full Text: DOI OpenURL
Jiwari, Ram Lagrange interpolation and modified cubic B-spline differential quadrature methods for solving hyperbolic partial differential equations with Dirichlet and Neumann boundary conditions. (English) Zbl 1344.41001 Comput. Phys. Commun. 193, 55-65 (2015). MSC: 41A15 35Lxx 35C10 PDF BibTeX XML Cite \textit{R. Jiwari}, Comput. Phys. Commun. 193, 55--65 (2015; Zbl 1344.41001) Full Text: DOI OpenURL
Ashyralyev, Allaberen; Modanli, Mahmut An operator method for telegraph partial differential and difference equations. (English) Zbl 1312.35135 Bound. Value Probl. 2015, Paper No. 41, 17 p. (2015). MSC: 35L90 35L15 35L20 35A35 PDF BibTeX XML Cite \textit{A. Ashyralyev} and \textit{M. Modanli}, Bound. Value Probl. 2015, Paper No. 41, 17 p. (2015; Zbl 1312.35135) Full Text: DOI OpenURL
Abbasbandy, S.; Roohani Ghehsareh, H.; Hashim, I.; Alsaedi, A. A comparison study of meshfree techniques for solving the two-dimensional linear hyperbolic telegraph equation. (English) Zbl 1297.65125 Eng. Anal. Bound. Elem. 47, 10-20 (2014). MSC: 65M70 35L99 PDF BibTeX XML Cite \textit{S. Abbasbandy} et al., Eng. Anal. Bound. Elem. 47, 10--20 (2014; Zbl 1297.65125) Full Text: DOI OpenURL
Dellacherie, Stéphane Construction and analysis of lattice Boltzmann methods applied to a 1D convection-diffusion equation. (English) Zbl 1305.76081 Acta Appl. Math. 131, No. 1, 69-140 (2014). MSC: 76M28 65M75 35Q35 65C05 PDF BibTeX XML Cite \textit{S. Dellacherie}, Acta Appl. Math. 131, No. 1, 69--140 (2014; Zbl 1305.76081) Full Text: DOI Link OpenURL
Raftari, Behrouz; Khosravi, Heidar; Yildirim, Ahmet Homotopy analysis method for the one-dimensional hyperbolic telegraph equation with initial conditions. (English) Zbl 1356.35090 Int. J. Numer. Methods Heat Fluid Flow 23, No. 2, 355-372 (2013). MSC: 35C10 35L20 PDF BibTeX XML Cite \textit{B. Raftari} et al., Int. J. Numer. Methods Heat Fluid Flow 23, No. 2, 355--372 (2013; Zbl 1356.35090) Full Text: DOI OpenURL
Khan, Yasir; Diblík, Josef; Faraz, Naeem; Šmarda, Zdeněk An efficient new perturbative Laplace method for space-time fractional telegraph equations. (English) Zbl 1377.35269 Adv. Difference Equ. 2012, Paper No. 204, 9 p. (2012). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{Y. Khan} et al., Adv. Difference Equ. 2012, Paper No. 204, 9 p. (2012; Zbl 1377.35269) Full Text: DOI OpenURL
Xie, Shu-Sen; Yi, Su-Cheol; Kwon, Tae In Fourth-order compact difference and alternating direction implicit schemes for telegraph equations. (English) Zbl 1307.65114 Comput. Phys. Commun. 183, No. 3, 552-569 (2012). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{S.-S. Xie} et al., Comput. Phys. Commun. 183, No. 3, 552--569 (2012; Zbl 1307.65114) Full Text: DOI OpenURL
Raftari, Behrouz; Yildirim, Ahmet Analytical solution of second-order hyperbolic telegraph equation by variational iteration and homotopy perturbation methods. (English) Zbl 1254.35010 Result. Math. 61, No. 1-2, 13-28 (2012). MSC: 35A25 35L20 35A35 35A15 PDF BibTeX XML Cite \textit{B. Raftari} and \textit{A. Yildirim}, Result. Math. 61, No. 1--2, 13--28 (2012; Zbl 1254.35010) Full Text: DOI OpenURL
Jiwari, Ram; Pandit, Sapna; Mittal, R. C. A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions. (English) Zbl 1246.65174 Appl. Math. Comput. 218, No. 13, 7279-7294 (2012). MSC: 65M20 65M70 35L20 65L06 PDF BibTeX XML Cite \textit{R. Jiwari} et al., Appl. Math. Comput. 218, No. 13, 7279--7294 (2012; Zbl 1246.65174) Full Text: DOI OpenURL
Dehghan, Mehdi; Yousefi, S. A.; Lotfi, A. The use of He’s variational iteration method for solving the telegraph and fractional telegraph equations. (English) Zbl 1210.65173 Int. J. Numer. Methods Biomed. Eng. 27, No. 2, 219-231 (2011). MSC: 65M70 PDF BibTeX XML Cite \textit{M. Dehghan} et al., Int. J. Numer. Methods Biomed. Eng. 27, No. 2, 219--231 (2011; Zbl 1210.65173) Full Text: DOI OpenURL
Banasiak, Jacek; Bobrowski, Adam Interplay between degenerate convergence of semigroups and asymptotic analysis: a study of a singularly perturbed abstract telegraph system. (English) Zbl 1239.34064 J. Evol. Equ. 9, No. 2, 293-314 (2009). MSC: 34G10 47D06 47D03 35B25 35R20 60G50 35B40 PDF BibTeX XML Cite \textit{J. Banasiak} and \textit{A. Bobrowski}, J. Evol. Equ. 9, No. 2, 293--314 (2009; Zbl 1239.34064) Full Text: DOI OpenURL
Aloy, R.; Casabán, M.-C.; Jódar, L. A discrete eigenfunctions method for computing mixed hyperbolic problems based on an implicit difference scheme. (English) Zbl 1175.65092 Appl. Math. Comput. 215, No. 1, 333-343 (2009). MSC: 65M06 65M12 35L15 PDF BibTeX XML Cite \textit{R. Aloy} et al., Appl. Math. Comput. 215, No. 1, 333--343 (2009; Zbl 1175.65092) Full Text: DOI OpenURL
Aloy, R.; Casabán, M. C.; Caudillo-Mata, L. A.; Jódar, L. Computing the variable coefficient telegraph equation using a discrete eigenfunctions method. (English) Zbl 1127.65073 Comput. Math. Appl. 54, No. 3, 448-458 (2007). Reviewer: Wilhelm Heinrichs (Essen) MSC: 65M70 65M06 35L15 PDF BibTeX XML Cite \textit{R. Aloy} et al., Comput. Math. Appl. 54, No. 3, 448--458 (2007; Zbl 1127.65073) Full Text: DOI OpenURL