×

zbMATH — the first resource for mathematics

Maximization of sensitivity of the PH-premium for families of Pareto distributed risks. (English. Russian original) Zbl 1304.91114
Mosc. Univ. Math. Bull. 65, No. 4, 161-165 (2010); translation from Vest. Mosk. Univ. Mat. Mekh. 65, No. 4, 28-33 (2010).
Summary: S. Wang’s premium principle [Insur. Math. Econ. 17, No. 1, 43–54 (1995; Zbl 0837.62088)] in the actuarial theory is studied. Taking the Pareto distribution as an example, it is shown that Wang’s principle can be used for ordering risks. The absolute sensitivity of premium is calculated for different parameters and its maximization is obtained.
MSC:
91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. S. Wang, ”Insurance Pricing and Increased Limits Ratemaking by Proportional Hazards Transforms,” Insurance: Mathematics and Economics 17, 43 (1995). · Zbl 0837.62088 · doi:10.1016/0167-6687(95)00010-P
[2] S. S. Wang, ”Premium Calculation by Transforming the Layer Premium Density,” Astin Bulletin 26, 71 (1996). · doi:10.2143/AST.26.1.563234
[3] S. Christofides, ”Pricing for Risk in Financial Transactions,” in Proc. GISG/ASTIN Joint Meeting in Glasgow. Glasgow, Scotland, 7–10 October 1998 (Glasgow, 1998), pp. 62–109.
[4] V. R. Young, ”Discussion of Christofides Conjecture Regarding Wang’s Premium Principle,” Astin Bulletin 29(2), 191 (1999). · doi:10.2143/AST.29.2.504610
[5] V. R. Young, ”Optimal Insurance under Wang’s Premium Principle,” Insurance: Mathematics and Economics 25, 109 (1999). · Zbl 1156.62364 · doi:10.1016/S0167-6687(99)00012-8
[6] Jing-Long Wang, ”A Note on Christofides’ Conjecture Regarding Wang’s Premium Principle,” Astin Bulletin 30(1), 13 (2000). · Zbl 1114.62355 · doi:10.2143/AST.30.1.504624
[7] Xian-Yi Wu, ”The Natural Sets of Wang’s Premium Principle,” Astin Bulletin 31(1), 139 (2001). · Zbl 1035.62110 · doi:10.2143/AST.31.1.998
[8] N. A. Arzhanova, ”Wang’s Principle for Premium Calculation,” in Trudy Voronezhskoi Zimnei Matem. Shkoly S. G. Kreina – 2006 (Voronezh State Univ., Voronezh, 2006), pp. 16–20.
[9] N. A. Irkhina, ”Wang’s Principle for Premium Calculation in Insurance and Some Reducibility Criteria,” Obozrenie Prikl. i Promyshl. Matem. 16(2), 262 (2009).
[10] N. A. Irkhina, ”Generalization of a Sufficient Reducibility Criterion for Wang’s Principle,” Obozrenie Prikl. i Promyshl. Matem. 16(4), 594 (2009). · Zbl 1214.91054
[11] A. P. Mishina and I. V. Proskuryakov, Higher Algebra (Nauka, Moscow, 1965; Pergamon Press, Oxford, 1965).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.