×

Multiple sign-changing solutions for a semilinear Neumann problem and the topology of the configuration space of the domain boundary. (English) Zbl 1200.35076

Calc. Var. Partial Differ. Equ. 38, No. 3-4, 317-356 (2010); erratum ibid. 40, No. 1-2, 293-294 (2011).
In this paper, the main aim of the author is to establish a lower estimate for the number of sign-changing solutions to the following Neumann problem
\[ -d^2 \Delta u + u =f(u)\quad \text{in }\Omega,\qquad\frac{\partial u}{\partial \nu}=0 \quad \text{in }\partial \Omega, \tag{P} \]
where \(d > 0\) is small enough, \(\Omega \subset\mathbb R^N\) with \( (N \geq 2)\) is a bounded or unbounded domain whose boundary is nonempty, compact and smooth, and the nonlinearity \(f \in C(\mathbb R,\mathbb R)\) is Sobolev subcritical. Under some further conditions, the author proved that there exists \(d_0>0\) such that for each \(d\in (0, d_0)\), problem (P) has at least \(\text{cat}(C(\partial\Omega)\times [0,1]^2, C(\partial\Omega)\times [0,1]^2)\) sign-changing solutions, and each of them has precisely two nodal domains. Furthermore, if \(\Omega\) is bounded, then there is at least one other sign-changing solution which has at most four nodal domains.

MSC:

35J20 Variational methods for second-order elliptic equations
35J61 Semilinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI

References:

[1] Ackermann N.: Multiple single-peaked solutions of a class of semilinear Neumann problems via the category of the domain boundary. Calc. Var. Partial Differ. Equ. 7(3), 263-292 (1998) · Zbl 0917.35037 · doi:10.1007/s005260050109
[2] Bartsch T., Weth T.: Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(3), 259-281 (2005) · Zbl 1114.35068 · doi:10.1016/j.anihpc.2004.07.005
[3] Bartsch T., Weth T.: The effect of the domain’s configuration space on the number of nodal solutions of singularly perturbed elliptic equations. Topol. Methods Nonlinear Anal. 26(1), 109-133 (2005) · Zbl 1152.35039
[4] Bartsch T., Liu Z., Weth T.: Sign changing solutions of superlinear Schrödinger equations. Commun. Partial Differ. Equ. 29(1-2), 25-42 (2004) · Zbl 1140.35410 · doi:10.1081/PDE-120028842
[5] Benci V., Cerami G.: The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch. Ration. Mech. Anal. 114(1), 79-93 (1991) · Zbl 0727.35055 · doi:10.1007/BF00375686
[6] Benci V., Cerami G.: Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc. Var. Partial Differ. Equ. 2(1), 29-48 (1994) · Zbl 0822.35046 · doi:10.1007/BF01234314
[7] Benci, V., Cerami, G., Passaseo, D.: On the Number of the Positive Solutions of Some Nonlinear Elliptic Problems. Nonlinear Analysis, Sc. Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., Pisa, pp. 93-107 (1991) · Zbl 0838.35040
[8] Berestycki H., Lions P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313-345 (1983) · Zbl 0533.35029
[9] Berestycki H., Gallouët T., Kavian O.: Équations de champs scalaires euclidiens non linéaires dans le plan. C. R. Acad. Sci. Paris Sér. I Math. 297(5), 307-310 (1983) · Zbl 0544.35042
[10] Byeon J., Jeanjean L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185(2), 185-200 (2007) · Zbl 1132.35078 · doi:10.1007/s00205-006-0019-3
[11] Clapp M., Puppe D.: Critical point theory with symmetries. J. Reine Angew. Math. 418, 1-29 (1991) · Zbl 0722.58011
[12] Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of Positive Solutions of Nonlinear Elliptic Equations in Rn. Mathematical Analysis and Applications, Part A, Advances in Mathematics Supplementary Studies, vol. 7, pp. 369-402. Academic Press, New York (1981) · Zbl 0469.35052
[13] Jeanjean L., Tanaka K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. Partial Differ. Equ. 21(3), 287-318 (2004) · Zbl 1060.35012
[14] Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (1997) · Zbl 1132.35078
[15] Lions P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223-283 (1984) · Zbl 0704.49004
[16] Liu Z., Sun J.: Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations. J. Differ. Equ. 172(2), 257-299 (2001) · Zbl 0995.58006 · doi:10.1006/jdeq.2000.3867
[17] Mancini G., Musina R.: The role of the boundary in some semilinear Neumann problems. Rend. Semin. Mat. Univ. Padova 88, 127-138 (1992) · Zbl 0814.35037
[18] Schechter M., Zou W.: Sign-changing critical points from linking type theorems. Trans. Am. Math. Soc. 358(12), 5293-5318 (2006) · Zbl 1186.35042 · doi:10.1090/S0002-9947-06-03852-9
[19] Szulkin A., Weth T.: Ground state solutions for some indefinite problems J. Funct. Anal. 257(12), 3802-3822 (2009) · Zbl 1178.35352 · doi:10.1016/j.jfa.2009.09.013
[20] Wang Z.Q.: On the existence of positive solutions for semilinear Neumann problems in exterior domains. Commun. Partial Differ. Equ. 17(7-8), 1309-1325 (1992) · Zbl 0784.35036 · doi:10.1080/03605309208820887
[21] Wang Z.Q.: On the existence of multiple, single-peaked solutions for a semilinear Neumann problem. Arch. Ration. Mech. Anal. 120(4), 375-399 (1992) · Zbl 0784.35035 · doi:10.1007/BF00380322
[22] Zou W.: Sign-Changing Critical Point Theory. Springer, New York (2008) · Zbl 1159.49010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.