zbMATH — the first resource for mathematics

Infinitesimal bending influence on the volume change. (English) Zbl 1335.53017
Summary: Applying tensor calculus we discuss change of the volume under infinitesimal bending of the surface. We obtain that the variation of the volume bounded by the surface \(s\) and the cone joining the origin to the boundary of the surface, under infinitesimal bending of \(s\) with the vector field of translation \(\mathbf s\), equals one third of the flux of the field \(\mathbf s\) through the given surface \(s\). An example is analysed and graphically presented. The paper points to the application of the obtained result in the calculation of the volume of a solid model.
53A45 Differential geometric aspects in vector and tensor analysis
52B11 \(n\)-dimensional polytopes
74G60 Bifurcation and buckling
Full Text: DOI
[1] Abdel-Malek, K.; Blackmore, D.; Joy, K., Swept volumes: foundations, perspectives and applications, Int. J. Shape Model., 12, 1, 87-127, (2006) · Zbl 1096.68753
[2] Abdel-Malek, K.; Othman, S., Multiple sweeping using the david-hartenberg representation method, Comput.-Aid. Des., 31, 567-583, (1999) · Zbl 1041.68532
[3] Alexandrov, V. A., Remarks on sabitov’s conjecture that volume is stationary under an infinitesimal bending of a surface, Sib. Mat. Zh., 5, 16-24, (1989)
[4] Alexandrov, V. A., An example of a flexible polyhedron with nonconstant volume in the spherical space, Beitr. Algebra Geom., 38, 1, 11-18, (1997) · Zbl 0881.52007
[5] Alexandrov, V. A., New manifestations of the darboux’s rotation and translation fields of a surface, New Zealand J. Math., 40, 59-65, (2010) · Zbl 1222.53006
[6] Blackmore, D.; Leu, M. C.; Shif, F., Analysis and modeling of deformed swept volume, Comput.-Aid. Des., 26, 4, 315-326, (1994) · Zbl 0805.68128
[7] R. Connelly, Assumptions and unsolved questions in the theory of bending, in: Studies in the Metric Theory of Surfaces (Russian translation), Mir, Moskva, 1980, pp. 228-238.
[8] Efimov, N., Kachestvennye voprosy teorii deformacii poverhnostei, UMN, 3, 2, 47-158, (1948)
[9] Gray, A., Modern differential geometry of curves and surfaces with Mathematica, (1998), CRC Press · Zbl 0942.53001
[10] Hinterleitner, I.; Mikeš, J.; Stránská, J., Infinitesimal F-planar transformations, Russ. Math., 4, 13-18, (2008) · Zbl 1162.53008
[11] Hinterleitner, I., On global geodesic mappings of ellipsoids, AIP Conf. Proc., 1460, 180-184, (2012)
[12] Mikeš, J., On existence of nontrivial global geodesic mappings on n-dimensional compact surfaces of revolution, (Diff. Geom. Appl. Int. Conf., Brno, Czechoslovakia, (1990), Word Sci.), 129-137 · Zbl 0790.53003
[13] Pavlović, M. N., Symbolic computation in structural engineering, Comput. Struct., 81, 2121-2136, (2003)
[14] M. Peternell, H. Pottmann, T. Steiner, H. Zhao, Swept volume, <http://www.math.uci.edu/zhao/homepage/research_files/SweptVolume.pdf>
[15] Slutskiy, D. A., An infinitesimally nonrigid polyhedron with nonstationary volume in the lobachevskii 3-space, Sib. Math. J., 52, 1, 131-138, (2011) · Zbl 1215.52010
[16] Vekua, I., Obobschennye analiticheskie funkcii, Nauka, Moskva, 1959.
[17] Velimirović, Lj., On variation of the volume under infinitesimal bending of a closed rotational surface, Novi Sad J. Math., 29, 3, 377-386, (1999) · Zbl 1075.53501
[18] Velimirović, Lj., Change of geometric magnitudes under infinitesimal bending, Facta Univ., 3, 11, 135-148, (2001) · Zbl 1012.53003
[19] Velimirović, Lj.; Minčić, S.; Stanković, M., Infinitesimal rigidity and flexibility of a non-symmetric affine connection space, Eur. J. Comb., 31, 4, 1148-1159, (2010) · Zbl 1194.53016
[20] Velimirović, Lj. S.; Ćirić, M. S.; Velimirović, N. M., On the Willmore energy of shells under infinitesimal deformations, Comput. Math. Appl., 61, 11, 3181-3190, (2011) · Zbl 1222.74036
[21] Velimirović, Lj. S.; Cvetković, M. D.; Ćirić, M. S.; Velimirović, N., Analysis of gaudi surfaces at small deformations, Appl. Math. Comput., 218, 6999-7004, (2012) · Zbl 1246.65035
[22] Williams, C. J.K., Use of structural analogy in generation of smooth surfaces for engineering purposes, Comput.-Aid. Des., 19, 6, 310-322, (1987) · Zbl 0655.65036
[23] Zlatanović, M. Lj., New projective tensors for equitorsion geodesic mappings, Appl. Math. Lett., 25, 5, 890-897, (2012) · Zbl 1254.53023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.