×

Efficient numerical stability analysis of detonation waves in ZND. (English) Zbl 1390.76090

Summary: As described in the classic works of Lee-Stewart [H. I. Lee and D. S. Stewart, J. Fluid Mech. 216, 103–132 (1990; Zbl 0698.76120)] and Short-Stewart [M. Short and D. S. Stewart, J. Fluid Mech. 382, 109–135 (1999; Zbl 0932.76024)], the numerical evaluation of linear stability of planar detonation waves is a computationally intensive problem of considerable interest in applications. Reexamining this problem from a modern numerical Evans function point of view, we derive a new algorithm for their stability analysis, related to a much older method of J. J. Erpenbeck [Phys. Fluids 5, 1181–1187 (1962; Zbl 0111.38403)], that, while equally simple and easy to implement as the standard method introduced by Lee-Stewart, appears to be potentially faster and more stable.

MSC:

76E99 Hydrodynamic stability
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76L05 Shock waves and blast waves in fluid mechanics

Software:

STABLAB
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J. Alexander, R. Gardner, and C. Jones, A topological invariant arising in the stability analysis of travelling waves, J. Reine Angew. Math. 410 (1990), 167 – 212. · Zbl 0705.35070
[2] G. Abouseif and T.Y. Toong. Theory of unstable one-dimensional detonations, Combust. Flame 45 (1982) 67-94.
[3] S. Alinhac, Ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Journées ”Équations aux Dérivées Partielles” (Saint Jean de Monts, 1988) École Polytech., Palaiseau, 1988, pp. Exp. No. VIII, 7 (French). S. Alinhac, Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations 14 (1989), no. 2, 173 – 230 (French, with English summary). · Zbl 0692.35063 · doi:10.1080/03605308908820595
[4] Blake Barker, Jeffrey Humpherys, Keith Rudd, and Kevin Zumbrun, Stability of viscous shocks in isentropic gas dynamics, Comm. Math. Phys. 281 (2008), no. 1, 231 – 249. · Zbl 1171.35071 · doi:10.1007/s00220-008-0487-4
[5] Blake Barker, Jeffrey Humpherys, and Kevin Zumbrun, One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics, J. Differential Equations 249 (2010), no. 9, 2175 – 2213. · Zbl 1402.76051 · doi:10.1016/j.jde.2010.07.019
[6] B. Barker, J. Humpherys, and K. Zumbrun. STABLAB: A MATLAB-based numerical library for Evans function computation. Available at: http://impact.byu.edu/stablab/.
[7] Blake Barker, Olivier Lafitte, and Kevin Zumbrun, Existence and stability of viscous shock profiles for 2-D isentropic MHD with infinite electrical resistivity, Acta Math. Sci. Ser. B Engl. Ed. 30 (2010), no. 2, 447 – 498. · Zbl 1240.35033 · doi:10.1016/S0252-9602(10)60058-6
[8] Blake Barker, Marta Lewicka, and Kevin Zumbrun, Existence and stability of viscoelastic shock profiles, Arch. Ration. Mech. Anal. 200 (2011), no. 2, 491 – 532. · Zbl 1233.35023 · doi:10.1007/s00205-010-0363-1
[9] B. Barker, S. Shaw, S. Yarahmadian, and K. Zumbrun. Existence and stability of steady states of a reaction convection diffusion equation modeling microtubule formation, to appear, J. Math. Biology. · Zbl 1230.92019
[10] B. Barker and K. Zumbrun. Numerical stability of ZND detonations for Majda’s model, preprint (2010).
[11] B. Barker and K. Zumbrun. Numerical stability of ZND detonations, in preparation.
[12] Anne Bourlioux, Andrew J. Majda, and Victor Roytburd, Theoretical and numerical structure for unstable one-dimensional detonations, SIAM J. Appl. Math. 51 (1991), no. 2, 303 – 343. · Zbl 0731.76076 · doi:10.1137/0151016
[13] Thomas J. Bridges, Gianne Derks, and Georg Gottwald, Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework, Phys. D 172 (2002), no. 1-4, 190 – 216. · Zbl 1047.37053 · doi:10.1016/S0167-2789(02)00655-3
[14] Leon Quentin Brin, Numerical testing of the stability of viscous shock waves, ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D.) – Indiana University.
[15] Leon Q. Brin, Numerical testing of the stability of viscous shock waves, Math. Comp. 70 (2001), no. 235, 1071 – 1088. · Zbl 0980.65092
[16] Leon Q. Brin and Kevin Zumbrun, Analytically varying eigenvectors and the stability of viscous shock waves, Mat. Contemp. 22 (2002), 19 – 32. Seventh Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 2001). · Zbl 1044.35057
[17] J. Buckmaster and J. Neves. One-dimensional detonation stability: the spectrum for infinite activation energy. Phys. Fluids 31 (1988) no. 12, 3572-3576. · Zbl 0656.76061
[18] Nicola Costanzino, Jeffrey Humpherys, Toan Nguyen, and Kevin Zumbrun, Spectral stability of noncharacteristic isentropic Navier-Stokes boundary layers, Arch. Ration. Mech. Anal. 192 (2009), no. 3, 537 – 587. · Zbl 1169.76051 · doi:10.1007/s00205-008-0153-1
[19] Jerome J. Erpenbeck, Stability of step shocks, Phys. Fluids 5 (1962), 1181 – 1187. · Zbl 0111.38403 · doi:10.1063/1.1706503
[20] J. J. Erpenbeck. Stability of steady-state equilibrium detonations. Physics of Fluids, 5(5):604-614, 1962.
[21] J. J. Erpenbeck. Stability of idealized one-reaction detonations, Phys. Fluids, 7 (1964). · Zbl 0123.42901
[22] W. Fickett and W. C. Davis. Detonation: Theory and Experiment. Dover Publications, 2000.
[23] W. Fickett and W. Wood. Flow calculations for pulsating one-dimensional detonations. Phys. Fluids 9 (1966) 903-916.
[24] G. Richard Fowles, On the evolutionary condition for stationary plane waves in inert and reactive substances, Shock induced transitions and phase structures in general media, IMA Vol. Math. Appl., vol. 52, Springer, New York, 1993, pp. 93 – 110. · Zbl 0788.76057 · doi:10.1007/978-1-4613-8348-2_5
[25] Robert A. Gardner and Kevin Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math. 51 (1998), no. 7, 797 – 855. , https://doi.org/10.1002/(SICI)1097-0312(199807)51:73.0.CO;2-1 · Zbl 0933.35136
[26] Jeffrey Humpherys, Olivier Lafitte, and Kevin Zumbrun, Stability of isentropic Navier-Stokes shocks in the high-Mach number limit, Comm. Math. Phys. 293 (2010), no. 1, 1 – 36. · Zbl 1195.35244 · doi:10.1007/s00220-009-0885-2
[27] Jeffrey Humpherys, Gregory Lyng, and Kevin Zumbrun, Spectral stability of ideal-gas shock layers, Arch. Ration. Mech. Anal. 194 (2009), no. 3, 1029 – 1079. · Zbl 1422.76122 · doi:10.1007/s00205-008-0195-4
[28] Jeffrey Humpherys and Kevin Zumbrun, An efficient shooting algorithm for Evans function calculations in large systems, Phys. D 220 (2006), no. 2, 116 – 126. · Zbl 1101.65082 · doi:10.1016/j.physd.2006.07.003
[29] Helge Kristian Jenssen, Gregory Lyng, and Mark Williams, Equivalence of low-frequency stability conditions for multidimensional detonations in three models of combustion, Indiana Univ. Math. J. 54 (2005), no. 1, 1 – 64. · Zbl 1127.35046 · doi:10.1512/iumj.2005.54.2685
[30] Todd Kapitula and Björn Sandstede, Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations, Phys. D 124 (1998), no. 1-3, 58 – 103. · Zbl 0935.35150 · doi:10.1016/S0167-2789(98)00172-9
[31] Tosio Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. · Zbl 0342.47009
[32] Aslan R. Kasimov and D. Scott Stewart, Spinning instability of gaseous detonations, J. Fluid Mech. 466 (2002), 179 – 203. · Zbl 1013.76034 · doi:10.1017/S0022112002001192
[33] O. Lafitte, M. Williams, and K. Zumbrun. High-frequency asymptotics and multi-d instability of ZND detonations. In preparation. · Zbl 1427.76081
[34] H. I. Lee and D. S. Stewart. Calculation of linear detonation instability: one-dimensional instability of plane detonation. J. Fluid Mech., 216:103-132, 1990. · Zbl 0698.76120
[35] Gregory Lyng and Kevin Zumbrun, One-dimensional stability of viscous strong detonation waves, Arch. Ration. Mech. Anal. 173 (2004), no. 2, 213 – 277. · Zbl 1067.76041 · doi:10.1007/s00205-004-0317-6
[36] Gregory Lyng and Kevin Zumbrun, A stability index for detonation waves in Majda’s model for reacting flow, Phys. D 194 (2004), no. 1-2, 1 – 29. · Zbl 1061.35018 · doi:10.1016/j.physd.2004.01.036
[37] Andrew Majda, The stability of multidimensional shock fronts, Mem. Amer. Math. Soc. 41 (1983), no. 275, iv+95. · Zbl 0506.76075 · doi:10.1090/memo/0275
[38] Corrado Mascia and Kevin Zumbrun, Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems, Arch. Ration. Mech. Anal. 172 (2004), no. 1, 93 – 131. · Zbl 1058.35160 · doi:10.1007/s00205-003-0293-2
[39] Robert L. Pego and Michael I. Weinstein, Eigenvalues, and instabilities of solitary waves, Philos. Trans. Roy. Soc. London Ser. A 340 (1992), no. 1656, 47 – 94. · Zbl 0776.35065 · doi:10.1098/rsta.1992.0055
[40] Björn Sandstede, Stability of travelling waves, Handbook of dynamical systems, Vol. 2, North-Holland, Amsterdam, 2002, pp. 983 – 1055. · Zbl 1056.35022 · doi:10.1016/S1874-575X(02)80039-X
[41] B. Sandstede. private communication, 1999.
[42] Denis Serre, Systems of conservation laws. 1, Cambridge University Press, Cambridge, 1999. Hyperbolicity, entropies, shock waves; Translated from the 1996 French original by I. N. Sneddon. · Zbl 0930.35002
[43] Denis Serre, Systems of conservation laws. 2, Cambridge University Press, Cambridge, 2000. Geometric structures, oscillations, and initial-boundary value problems; Translated from the 1996 French original by I. N. Sneddon. · Zbl 0930.35003
[44] Mark Short and D. Scott Stewart, The multi-dimensional stability of weak-heat-release detonations, J. Fluid Mech. 382 (1999), 109 – 135. · Zbl 0932.76024 · doi:10.1017/S0022112098003759
[45] D. S. Stewart and A. R. Kasimov, On the State of Detonation Stability Theory and Its Application to Propulsion, Journal of Propulsion and Power, 22:6, 1230-1244, 2006.
[46] Joel Smoller, Shock waves and reaction-diffusion equations, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York, 1994. · Zbl 0807.35002
[47] Benjamin Texier and Kevin Zumbrun, Galloping instability of viscous shock waves, Phys. D 237 (2008), no. 10-12, 1553 – 1601. · Zbl 1143.76439 · doi:10.1016/j.physd.2008.03.008
[48] Benjamin Texier and Kevin Zumbrun, Hopf bifurcation of viscous shock waves in compressible gas dynamics and MHD, Arch. Ration. Mech. Anal. 190 (2008), no. 1, 107 – 140. · Zbl 1155.76037 · doi:10.1007/s00205-008-0112-x
[49] Benjamin Texier and Kevin Zumbrun, Transition to longitudinal instability of detonation waves is generically associated with Hopf bifurcation to time-periodic galloping solutions, Comm. Math. Phys. 302 (2011), no. 1, 1 – 51. · Zbl 1217.35138 · doi:10.1007/s00220-010-1175-8
[50] Kevin Zumbrun, Multidimensional stability of planar viscous shock waves, Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl., vol. 47, Birkhäuser Boston, Boston, MA, 2001, pp. 307 – 516. · Zbl 0989.35089
[51] Kevin Zumbrun, Stability of large-amplitude shock waves of compressible Navier-Stokes equations, Handbook of mathematical fluid dynamics. Vol. III, North-Holland, Amsterdam, 2004, pp. 311 – 533. With an appendix by Helge Kristian Jenssen and Gregory Lyng. · Zbl 1222.35156
[52] Kevin Zumbrun, Stability of detonation profiles in the ZND limit, Arch. Ration. Mech. Anal. 200 (2011), no. 1, 141 – 182. · Zbl 1233.35030 · doi:10.1007/s00205-010-0342-6
[53] Kevin Zumbrun, A local greedy algorithm and higher-order extensions for global numerical continuation of analytically varying subspaces, Quart. Appl. Math. 68 (2010), no. 3, 557 – 561. · Zbl 1195.65105
[54] K. Zumbrun. Numerical error analysis for Evans function computations: a numerical gap lemma, centered-coordinate methods, and the unreasonable effectiveness of continuous orthogonalization. preprint, 2009.
[55] K. Zumbrun. High-frequency asymptotics and stability of ZND detonations in the high-overdrive and small-heat release limits. to appear, Arch. Ration. Mech. Anal. · Zbl 1318.76022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.