×

Large deviation principle for stochastic Burgers type equation with reflection. (English) Zbl 1485.60033

The authors consider a stochastic Burgers type equation on the interval \([0,1]\) with Dirichlet boundary condition and reflection. The purpose is to establish a small-noise large deviation principle for the solutions, by using the weak convergence approach. The authors adopt a new sufficient condition for the weak convergence criteria proved by A. Matoussi et al. [Appl. Math. Optim. 83, No. 2, 849–879 (2021; Zbl 1470.60188)]. The main difficulty in the proof is to show global well-posedness and continuity of the skeleton equation, due to the highly nonlinear coefficient and the singularity caused by reflection. The authors overcome these difficulties by introducing penalized skeleton equations and showing that the limit of penalized solutions gives rise to a solution of the skeleton equation.

MSC:

60F10 Large deviations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)

Citations:

Zbl 1470.60188
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Budhiraja; P. Dupuis, A variational representation for positive functionals of infinite dimensional Brownian motion, Probab. Math. Statist., 20, 39-61 (2000) · Zbl 0994.60028
[2] A. Budhiraja and P. Dupuis, Analysis and Approximation of Rare Events: Representations and Weak Convergence Methods, Springer, New York, 2019. · Zbl 1427.60003
[3] A. Budhiraja; P. Dupuis; V. Maroulas, Large deviations for infinite dimensional stochastic dynamical systems continuous time processes, Ann. Probab., 36, 1390-1420 (2008) · Zbl 1155.60024 · doi:10.1214/07-AOP362
[4] A. Budhiraja; P. Dupuis; V. Maroulas, Variational representations for continuous time processes, Ann. Inst. H. Poincaré Probab. Statist., 47, 725-747 (2011) · Zbl 1231.60018 · doi:10.1214/10-AIHP382
[5] V. Cardon-Weber, Large deviations for a Burgers’-type SPDE, Stochastic Process. Appl., 84, 53-70 (1999) · Zbl 0996.60073 · doi:10.1016/S0304-4149(99)00047-2
[6] R. Dalang; C. Mueller; L. Zambotti, Hitting properties of parabolic S.P.D.E.’s with reflection, Ann. Probab., 34, 1423-1450 (2006) · Zbl 1128.60050 · doi:10.1214/009117905000000792
[7] C. Donati-Martin; E. Pardoux, White noise driven SPDEs with reflection, Probab. Theory Related Fields, 95, 1-24 (1993) · Zbl 0794.60059 · doi:10.1007/BF01197335
[8] Z. Dong; J. Wu; R. Zhang; T. Zhang, Large deviation principles for first-order scalar conservation laws with stochastic forcing, Ann. Appl. Probab., 30, 324-367 (2020) · Zbl 1465.60025 · doi:10.1214/19-AAP1503
[9] Z. Dong; J. Xiong; J. Zhai; T. Zhang, A moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises, J. Funct. Anal., 272, 227-254 (2017) · Zbl 1356.60100 · doi:10.1016/j.jfa.2016.10.012
[10] T. Funaki; S. Olla, Fluctuations for \(\nabla \varphi\) interface model on a wall, Stochastic Process. Appl., 94, 1-27 (2001) · Zbl 1055.60096 · doi:10.1016/S0304-4149(00)00104-6
[11] W. Liu; C. Tao; J. Zhu, Large deviation principle for a class of SPDE with locally monotone coefficients, Sci. China Math., 63, 1181-1202 (2020) · Zbl 1451.60070 · doi:10.1007/s11425-018-9440-3
[12] W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Berlin, Springer, 2015. · Zbl 1361.60002
[13] K. Magdalena, Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections, Ann. Inst. Henri Poincaré Probab. Stat., 49 (2013), 160-181. · Zbl 1270.60032
[14] A. Matoussi; W. Sabbagh; T. Zhang, Large deviation principles of obstacle problems for quasilinear stochastic PDEs, Appl. Math. Optim., 83, 849-879 (2021) · Zbl 1470.60188 · doi:10.1007/s00245-019-09570-5
[15] D. Nualart; E. Pardoux, White noise driven by quasilinear SPDEs with reflection, Probab. Theory Related Fields, 93, 77-89 (1992) · Zbl 0767.60055 · doi:10.1007/BF01195389
[16] J. Ren; J. Wu, On uniform large deviations principle for multi-valued SDEs via the viscosity solution approach, Chin. Ann. Math. Ser. B, 40, 285-308 (2019) · Zbl 1418.60063 · doi:10.1007/s11401-019-0133-9
[17] J. Ren; J. Wu; H. Zhang, General large deviations and functional iterated logarithm law for multivalued stochastic differential equations, J. Theoret. Probab., 28, 550-586 (2015) · Zbl 1327.60121 · doi:10.1007/s10959-013-0531-y
[18] J. Ren; S. Xu; X. Zhang, Large deviation for multivalued stochastic differential equations, J. Theoret. Probab., 23, 1142-1156 (2010) · Zbl 1204.60054 · doi:10.1007/s10959-009-0274-y
[19] R. Wang; J. Zhai; T. Zhang, A moderate deviation principle for 2-D stochastic Navier-Stokes equations, J. Differ. Equ., 258, 3363-3390 (2015) · Zbl 1310.60100 · doi:10.1016/j.jde.2015.01.008
[20] J. Wu, Uniform large deviations for multivalued stochastic differential equations with Poisson jumps, Kyoto J. Math., 51, 535-559 (2011) · Zbl 1230.60062 · doi:10.1215/21562261-1299891
[21] J. Xiong; J. L. Zhai, Large deviations for locally monotone stochastic partial differential equations driven by Lévy noise, Bernoulli, 24, 2429-2460 (2018) · Zbl 1427.60137 · doi:10.3150/17-BEJ947
[22] T. Xu; T. Zhang, White noise driven SPDEs with reflection: existence, uniqueness and large deviation principles, Stochastic Process. Appl., 119, 3453-3470 (2009) · Zbl 1175.60068 · doi:10.1016/j.spa.2009.06.005
[23] S. Yang and T. Zhang, Strong solutions to reflecting stochastic differential equations with singular drift, preprint, arXiv: 2002.12150.
[24] T. Zhang, Large deviations for invariant measures of SPDEs with two reflecting walls, Stochastic Process. Appl., 122, 3425-3444 (2012) · Zbl 1248.60077 · doi:10.1016/j.spa.2012.06.003
[25] T. Zhang, Lattice approximations of reflected stochastic partial differential equations driven by space-time white noise, Ann. Appl. Probab., 26, 3602-3629 (2016) · Zbl 1358.60075 · doi:10.1214/16-AAP1186
[26] T. Zhang, Stochastic Burgers type equations with reflection: existence, uniqueness, J. Differ. Equ., 267, 4537-4571 (2019) · Zbl 1415.60081 · doi:10.1016/j.jde.2019.05.008
[27] W. Zheng, J. Zhai and T. Zhang, Moderate deviations for stochastic models of two-dimensional second-grade fluids driven by Lévy noise, Commun. Math. Stat., 6 (2018), 583-612. · Zbl 1404.60096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.