×

A parabolic level set reinitialisation method using a discontinuous Galerkin discretisation. (English) Zbl 1443.65154

Summary: Level set reinitialisation is a part of the level set methodology which allows one to generate, at any point during level set evolution, a level set function which is a signed distance function to its own zero isocontour. Whilst not in general a required condition, maintaining the level set function as a signed distance function is often desirable as it removes a known source of numerical instability. This paper presents a novel level set reinitialisation method based on the solution of a nonlinear parabolic PDE. The PDE is discretised using a symmetric interior penalty discontinuous Galerkin method in space, and an implicit Euler method in time. Also explored are explicit and semi-implicit time discretisations, however, numerical experiments demonstrate that such methods suffer from severe time step restrictions, leading to prohibitively large numbers of iterations required to achieve convergence. The proposed method is shown to be high-order accurate through a number of numerical examples. More specifically, the presented experimental orders of convergence align with the well established optimal convergence rates for the symmetric interior penalty method; that is the error in the \(L^2\) norm decreases proportionally to \(h^{p+1}\) and the error in the DG norm decreases proportionally to \(h^p\).

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Grooss, J.; Hesthaven, J. S., A level set discontinuous Galerkin method for free surface flows, Comput. Methods Appl. Mech. Engrg., 195, 25, 3406-3429 (2006) · Zbl 1121.76035
[2] Allaire, G.; Jouve, F.; Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 1, 363-393 (2004) · Zbl 1136.74368
[3] Sethian, J. A., (Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monographs on Applied and Computational Mathematics, vol. 3 (1999), Cambridge University Press: Cambridge University Press Cambridge, U.K. ; New York) · Zbl 0973.76003
[4] Maitre, E.; Milcent, T.; Cottet, G.-H.; Raoult, A.; Usson, Y., Applications of level set methods in computational biophysics, Math. Comput. Modelling, 49, 11-12, 2161-2169 (2009) · Zbl 1171.76435
[5] Osher, S.; Fedkiw, R. P., (Level Set Methods and Dynamic Implicit Surfaces. Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, vol. 153 (2003), Springer: Springer New York) · Zbl 1026.76001
[6] Adams, T.; Giani, S.; Coombs, W. M., A high-order elliptic PDE based level set reinitialisation method using a discontinuous Galerkin discretisation, J. Comput. Phys., 379, 373-391 (2019) · Zbl 07581577
[7] Basting, C.; Kuzmin, D., A minimization-based finite element formulation for interface-preserving level set reinitialization, Computing, 95, S1, 13-25 (2013)
[8] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[9] Mulder, W.; Osher, S.; Sethian, J. A., Computing interface motion in compressible gas dynamics, J. Comput. Phys., 100, 2, 209-228 (1992) · Zbl 0758.76044
[10] Chopp, D. L., Computing minimal surfaces via level set curvature flow, J. Comput. Phys., 106, 1, 77-91 (1993) · Zbl 0786.65015
[11] Li, C.; Xu, C.; Gui, C.; Fox, M. D., Level set evolution without re-initialization: A new variational formulation, (Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, Vol. 1 (2005), IEEE), 430-436
[12] Basting, C.; Kuzmin, D.; Shadid, J. N., Optimal control for reinitialization in finite element level set methods, Internat. J. Numer. Methods Fluids, 84, 5, 292-305 (2017)
[13] LeSaint, P.; Raviart, P., On a finite element method for solving the neutron transport problem, Math. Aspects Finite Elem. Partial Differential Equations, 89-123 (1974) · Zbl 0341.65076
[14] Cockburn, B., Discontinuous Galerkin methods for convection-dominated problems, (Griebel, M.; Keyes, D. E.; Nieminen, R. M.; Roose, D.; Schlick, T.; Barth, T. J.; Deconinck, H., High-Order Methods for Computational Physics, Vol. 9 (1999), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 69-224 · Zbl 0937.76049
[15] Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., The development of discontinuous Galerkin methods, (Griebel, M.; Keyes, D. E.; Nieminen, R. M.; Roose, D.; Schlick, T.; Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., Discontinuous Galerkin Methods, Vol. 11 (2000), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 3-50 · Zbl 0989.76045
[16] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261 (2001) · Zbl 1065.76135
[17] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, D., Discontinuous Galerkin methods for elliptic problems, (Discontinuous Galerkin Methods. Discontinuous Galerkin Methods, Lecture Notes in Computational Science and Engineering (2000), Springer: Springer Berlin, Heidelberg), 89-101 · Zbl 0948.65127
[18] Houston, P.; Robson, J.; Süli, E., Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I: The scalar case, IMA J. Numer. Anal., 25, 4, 726-749 (2005) · Zbl 1084.65116
[19] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 4, 742-760 (1982) · Zbl 0482.65060
[20] Baker, G. A., Finite element methods for elliptic equations using nonconforming elements, Math. Comp., 31, 137, 45-49 (1977) · Zbl 0364.65085
[21] Wheeler, M. F., An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal., 15, 1, 152-161 (1978) · Zbl 0384.65058
[22] Oden, J.; Babuŝka, I.; Baumann, C. E., A discontinuous hp finite element method for diffusion problems, J. Comput. Phys., 146, 2, 491-519 (1998) · Zbl 0926.65109
[23] Rivière, B.; Wheeler, M. F.; Girault, V., Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems, Part I, Comput. Geosci., 3, 3-4, 337-360 (1999) · Zbl 0951.65108
[24] Rivière, B.; Wheeler, M. F., A discontinuous Galerkin method applied to nonlinear parabolic equations, (Griebel, M.; Keyes, D. E.; Nieminen, R. M.; Roose, D.; Schlick, T.; Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., Discontinuous Galerkin Methods, Vol. 11 (2000), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 231-244 · Zbl 0946.65078
[25] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[26] Dolejší, V., Analysis and application of the IIPG method to quasilinear nonstationary convection – diffusion problems, J. Comput. Appl. Math., 222, 2, 251-273 (2008) · Zbl 1165.65055
[27] Gudi, T.; Pani, A. K., Discontinuous Galerkin methods for quasi-linear elliptic problems of nonmonotone type, SIAM J. Numer. Anal., 45, 1, 163-192 (2007) · Zbl 1140.65082
[28] Song, L., Fully discrete interior penalty discontinuous Galerkin methods for nonlinear parabolic equations, Numer. Methods Partial Differential Equations, 28, 1, 288-311 (2012) · Zbl 1236.65127
[29] Song, L.; Gie, G.-M.; Shiue, M.-C., Interior penalty discontinuous Galerkin methods with implicit time-integration techniques for nonlinear parabolic equations, Numer. Methods Partial Differential Equations, 29, 4, 1341-1366 (2013) · Zbl 1281.65131
[30] Castillo, P., Performance of discontinuous Galerkin methods for elliptic PDEs, SIAM J. Sci. Comput., 24, 2, 524-547 (2002) · Zbl 1021.65054
[31] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection – diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463 (1998) · Zbl 0927.65118
[32] Santambrogio, F., Euclidean, metric, and wasserstein gradient flows: an overview, Bull. Math. Sci., 7, 1, 87-154 (2017) · Zbl 1369.34084
[33] Müller, B.; Kummer, F.; Oberlack, M., Highly accurate surface and volume integration on implicit domains by means of moment-fitting, Internat. J. Numer. Methods Engrg., 96, 8, 512-528 (2013) · Zbl 1352.65083
[34] Dolejší, V., Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows, Commun. Comput. Phys., 4, 2, 231-274 (2008) · Zbl 1364.76085
[35] Giani, S.; Hall, E. J.C., An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems, Math. Models Methods Appl. Sci., 22, 10, 1250030 (2012) · Zbl 1257.65062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.