Xue, Feng; Ai, Xia; Liu, Jiaqi On the convergence of recursive SURE for total variation minimization. (English) Zbl 07330238 J. Inverse Ill-Posed Probl. 29, No. 2, 203-217 (2021). MSC: 68U10 94A08 PDF BibTeX XML Cite \textit{F. Xue} et al., J. Inverse Ill-Posed Probl. 29, No. 2, 203--217 (2021; Zbl 07330238) Full Text: DOI
Jiang, Fan; Cai, Xingju; Wu, Zhongming; Han, Deren Approximate first-order primal-dual algorithms for saddle point problems. (English) Zbl 07328920 Math. Comput. 90, No. 329, 1227-1262 (2021). MSC: 65K05 65K10 90C25 PDF BibTeX XML Cite \textit{F. Jiang} et al., Math. Comput. 90, No. 329, 1227--1262 (2021; Zbl 07328920) Full Text: DOI
Liu, Jialin; Yin, Wotao; Li, Wuchen; Chow, Yat Tin Multilevel optimal transport: a fast approximation of Wasserstein-1 distances. (English) Zbl 07303444 SIAM J. Sci. Comput. 43, No. 1, A193-A220 (2021). MSC: 49Q22 49M25 90C90 PDF BibTeX XML Cite \textit{J. Liu} et al., SIAM J. Sci. Comput. 43, No. 1, A193--A220 (2021; Zbl 07303444) Full Text: DOI
Valkonen, Tuomo Preconditioned proximal point methods and notions of partial subregularity. (English) Zbl 1455.49012 J. Convex Anal. 28, No. 1, 251-278 (2021). MSC: 49J53 47H05 49M05 49M29 94A08 PDF BibTeX XML Cite \textit{T. Valkonen}, J. Convex Anal. 28, No. 1, 251--278 (2021; Zbl 1455.49012) Full Text: Link
Lee, Chang-Ock; Park, Jongho Recent advances in domain decomposition methods for total variation minimization. (English) Zbl 1453.65429 J. Korean Soc. Ind. Appl. Math. 24, No. 2, 161-197 (2020). MSC: 65N55 65K10 65Y05 68U10 PDF BibTeX XML Cite \textit{C.-O. Lee} and \textit{J. Park}, J. Korean Soc. Ind. Appl. Math. 24, No. 2, 161--197 (2020; Zbl 1453.65429) Full Text: DOI
Bredies, Kristian; Holler, Martin Higher-order total variation approaches and generalisations. (English) Zbl 1453.92154 Inverse Probl. 36, No. 12, Article ID 123001, 128 p. (2020). MSC: 92C55 PDF BibTeX XML Cite \textit{K. Bredies} and \textit{M. Holler}, Inverse Probl. 36, No. 12, Article ID 123001, 128 p. (2020; Zbl 1453.92154) Full Text: DOI
Wang, Kai; He, Hongjin A double extrapolation primal-dual algorithm for saddle point problems. (English) Zbl 1453.65146 J. Sci. Comput. 85, No. 2, Paper No. 30, 29 p. (2020). MSC: 65K15 49J40 90C25 94A08 PDF BibTeX XML Cite \textit{K. Wang} and \textit{H. He}, J. Sci. Comput. 85, No. 2, Paper No. 30, 29 p. (2020; Zbl 1453.65146) Full Text: DOI
Tran-Dinh, Quoc; Zhu, Yuzixuan Non-stationary first-order primal-dual algorithms with faster convergence rates. (English) Zbl 1451.90126 SIAM J. Optim. 30, No. 4, 2866-2896 (2020). MSC: 90C25 90C06 90-08 PDF BibTeX XML Cite \textit{Q. Tran-Dinh} and \textit{Y. Zhu}, SIAM J. Optim. 30, No. 4, 2866--2896 (2020; Zbl 1451.90126) Full Text: DOI
Zhang, Benxin; Zhu, Zhibin; Luo, Zhijun A modified Chambolle-Pock primal-dual algorithm for Poisson noise removal. (English) Zbl 07245605 Calcolo 57, No. 3, Paper No. 28, 18 p. (2020). MSC: 65K10 90C25 PDF BibTeX XML Cite \textit{B. Zhang} et al., Calcolo 57, No. 3, Paper No. 28, 18 p. (2020; Zbl 07245605) Full Text: DOI
Valkonen, Tuomo Testing and non-linear preconditioning of the proximal point method. (English) Zbl 07245581 Appl. Math. Optim. 82, No. 2, 591-636 (2020). MSC: 65K10 65K15 90C30 90C47 PDF BibTeX XML Cite \textit{T. Valkonen}, Appl. Math. Optim. 82, No. 2, 591--636 (2020; Zbl 07245581) Full Text: DOI
Huang, Wenli; Tang, Yuchao Primal-dual fixed point algorithm based on adapted metric method for solving convex minimization problem with application. (English) Zbl 07236001 Appl. Numer. Math. 157, 236-254 (2020). MSC: 47H 47 49J 26B 90C PDF BibTeX XML Cite \textit{W. Huang} and \textit{Y. Tang}, Appl. Numer. Math. 157, 236--254 (2020; Zbl 07236001) Full Text: DOI
Valkonen, Tuomo Inertial, corrected, primal-dual proximal splitting. (English) Zbl 07202490 SIAM J. Optim. 30, No. 2, 1391-1420 (2020). MSC: 65K10 65K15 90C30 90C47 PDF BibTeX XML Cite \textit{T. Valkonen}, SIAM J. Optim. 30, No. 2, 1391--1420 (2020; Zbl 07202490) Full Text: DOI
Banert, Sebastian; Ringh, Axel; Adler, Jonas; Karlsson, Johan; Öktem, Ozan Data-driven nonsmooth optimization. (English) Zbl 1435.90105 SIAM J. Optim. 30, No. 1, 102-131 (2020). MSC: 90C25 68T01 47H05 PDF BibTeX XML Cite \textit{S. Banert} et al., SIAM J. Optim. 30, No. 1, 102--131 (2020; Zbl 1435.90105) Full Text: DOI arXiv
O’Connor, Daniel; Vandenberghe, Lieven On the equivalence of the primal-dual hybrid gradient method and Douglas-Rachford splitting. (English) Zbl 07152790 Math. Program. 179, No. 1-2 (A), 85-108 (2020). MSC: 47N10 49M27 49M29 65K05 90C25 PDF BibTeX XML Cite \textit{D. O'Connor} and \textit{L. Vandenberghe}, Math. Program. 179, No. 1--2 (A), 85--108 (2020; Zbl 07152790) Full Text: DOI
Guo, Ke; Han, Deren Nonsymmetric proximal point algorithm with moving proximal centers for variational inequalities: convergence analysis. (English) Zbl 1432.90150 Appl. Numer. Math. 147, 1-18 (2020). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{K. Guo} and \textit{D. Han}, Appl. Numer. Math. 147, 1--18 (2020; Zbl 1432.90150) Full Text: DOI
Combettes, Patrick L.; Glaudin, Lilian E. Proximal activation of smooth functions in splitting algorithms for convex image recovery. (English) Zbl 1443.90269 SIAM J. Imaging Sci. 12, No. 4, 1905-1935 (2019). MSC: 90C25 94A08 47N10 PDF BibTeX XML Cite \textit{P. L. Combettes} and \textit{L. E. Glaudin}, SIAM J. Imaging Sci. 12, No. 4, 1905--1935 (2019; Zbl 1443.90269) Full Text: DOI
Aybat, Necdet Serhat; Hamedani, Erfan Yazdandoost A distributed ADMM-like method for resource sharing over time-varying networks. (English) Zbl 1427.90214 SIAM J. Optim. 29, No. 4, 3036-3068 (2019). MSC: 90C25 90C46 90C35 PDF BibTeX XML Cite \textit{N. S. Aybat} and \textit{E. Y. Hamedani}, SIAM J. Optim. 29, No. 4, 3036--3068 (2019; Zbl 1427.90214) Full Text: DOI arXiv
Ding, Weiyang; Ng, Michael K.; Zhang, Wenxing A Peaceman-Rachford splitting method with monotone plus skew-symmetric splitting for nonlinear saddle point problems. (English) Zbl 1436.65074 J. Sci. Comput. 81, No. 2, 763-788 (2019). MSC: 65K10 65F10 46N10 47N10 68U10 PDF BibTeX XML Cite \textit{W. Ding} et al., J. Sci. Comput. 81, No. 2, 763--788 (2019; Zbl 1436.65074) Full Text: DOI
Ma, Feng; Bi, Yiming; Gao, Bin A prediction-correction-based primal-dual hybrid gradient method for linearly constrained convex minimization. (English) Zbl 07107361 Numer. Algorithms 82, No. 2, 641-662 (2019). MSC: 65 PDF BibTeX XML Cite \textit{F. Ma} et al., Numer. Algorithms 82, No. 2, 641--662 (2019; Zbl 07107361) Full Text: DOI
Zhang, Benxin; Zhu, Zhibin; Xu, Chuanpei A primal-dual multiplier method for total variation image restoration. (English) Zbl 1440.94008 Appl. Numer. Math. 145, 145-158 (2019). MSC: 94A08 65F22 PDF BibTeX XML Cite \textit{B. Zhang} et al., Appl. Numer. Math. 145, 145--158 (2019; Zbl 1440.94008) Full Text: DOI
Lorenz, Dirk A.; Tran-Dinh, Quoc Non-stationary Douglas-Rachford and alternating direction method of multipliers: adaptive step-sizes and convergence. (English) Zbl 1427.90219 Comput. Optim. Appl. 74, No. 1, 67-92 (2019). MSC: 90C25 65K05 65J15 47H05 PDF BibTeX XML Cite \textit{D. A. Lorenz} and \textit{Q. Tran-Dinh}, Comput. Optim. Appl. 74, No. 1, 67--92 (2019; Zbl 1427.90219) Full Text: DOI arXiv
Valkonen, Tuomo Block-proximal methods with spatially adapted acceleration. (English) Zbl 1420.49034 ETNA, Electron. Trans. Numer. Anal. 51, 15-49 (2019). MSC: 49M29 65K10 65K15 90C30 90C47 PDF BibTeX XML Cite \textit{T. Valkonen}, ETNA, Electron. Trans. Numer. Anal. 51, 15--49 (2019; Zbl 1420.49034) Full Text: DOI Link arXiv
Arridge, Simon; Maass, Peter; Öktem, Ozan; Schönlieb, Carola-Bibiane Solving inverse problems using data-driven models. (English) Zbl 1429.65116 Acta Numerica 28, 1-174 (2019). MSC: 65J20 65J22 94A08 65-02 PDF BibTeX XML Cite \textit{S. Arridge} et al., Acta Numerica 28, 1--174 (2019; Zbl 1429.65116) Full Text: DOI
Cai, Xingju A proximal point algorithm with asymmetric linear term. (English) Zbl 1425.90117 Optim. Lett. 13, No. 4, 777-793 (2019). MSC: 90C33 PDF BibTeX XML Cite \textit{X. Cai}, Optim. Lett. 13, No. 4, 777--793 (2019; Zbl 1425.90117) Full Text: DOI
Ma, Feng On relaxation of some customized proximal point algorithms for convex minimization: from variational inequality perspective. (English) Zbl 1422.90037 Comput. Optim. Appl. 73, No. 3, 871-901 (2019). MSC: 90C25 PDF BibTeX XML Cite \textit{F. Ma}, Comput. Optim. Appl. 73, No. 3, 871--901 (2019; Zbl 1422.90037) Full Text: DOI
Herrmann, Marc; Herzog, Roland; Schmidt, Stephan; Vidal-Núñez, José; Wachsmuth, Gerd Discrete total variation with finite elements and applications to imaging. (English) Zbl 1448.94016 J. Math. Imaging Vis. 61, No. 4, 411-431 (2019). MSC: 94A08 68U10 49M29 65K05 65N30 PDF BibTeX XML Cite \textit{M. Herrmann} et al., J. Math. Imaging Vis. 61, No. 4, 411--431 (2019; Zbl 1448.94016) Full Text: DOI arXiv
Boţ, Radu Ioan; Csetnek, Ernö Robert ADMM for monotone operators: convergence analysis and rates. (English) Zbl 07055804 Adv. Comput. Math. 45, No. 1, 327-359 (2019). MSC: 47H05 65K05 90C25 PDF BibTeX XML Cite \textit{R. I. Boţ} and \textit{E. R. Csetnek}, Adv. Comput. Math. 45, No. 1, 327--359 (2019; Zbl 07055804) Full Text: DOI
Tian, Wenyi; Yuan, Xiaoming An alternating direction method of multipliers with a worst-case \(O(1/n^2)\) convergence rate. (English) Zbl 1414.90272 Math. Comput. 88, No. 318, 1685-1713 (2019). MSC: 90C25 65K10 PDF BibTeX XML Cite \textit{W. Tian} and \textit{X. Yuan}, Math. Comput. 88, No. 318, 1685--1713 (2019; Zbl 1414.90272) Full Text: DOI
Briceño-Arias, Luis; López Rivera, Sergio A projected primal-dual method for solving constrained monotone inclusions. (English) Zbl 07032728 J. Optim. Theory Appl. 180, No. 3, 907-924 (2019). MSC: 47H05 65K05 65K15 90C25 PDF BibTeX XML Cite \textit{L. Briceño-Arias} and \textit{S. López Rivera}, J. Optim. Theory Appl. 180, No. 3, 907--924 (2019; Zbl 07032728) Full Text: DOI
Fercoq, Olivier; Bianchi, Pascal A coordinate-descent primal-dual algorithm with large step size and possibly nonseparable functions. (English) Zbl 1411.90265 SIAM J. Optim. 29, No. 1, 100-134 (2019). MSC: 90C25 49M25 90C06 PDF BibTeX XML Cite \textit{O. Fercoq} and \textit{P. Bianchi}, SIAM J. Optim. 29, No. 1, 100--134 (2019; Zbl 1411.90265) Full Text: DOI arXiv
Pang, Zhi-Feng; Guo, Li-Zhen; Duan, Yuping; Lu, Jian Image restoration based on the minimized surface regularization. (English) Zbl 1442.94014 Comput. Math. Appl. 76, No. 8, 1893-1905 (2018). MSC: 94A08 PDF BibTeX XML Cite \textit{Z.-F. Pang} et al., Comput. Math. Appl. 76, No. 8, 1893--1905 (2018; Zbl 1442.94014) Full Text: DOI
Jiang, Lingling; Yin, Haiqing Wavelet inpainting by fractional order total variation. (English) Zbl 1450.94017 Multidimensional Syst. Signal Process. 29, No. 1, 299-320 (2018). MSC: 94A12 90C90 PDF BibTeX XML Cite \textit{L. Jiang} and \textit{H. Yin}, Multidimensional Syst. Signal Process. 29, No. 1, 299--320 (2018; Zbl 1450.94017) Full Text: DOI
Yu, Yongchao; Peng, Jigen A modified primal-dual method with applications to some sparse recovery problems. (English) Zbl 1427.90225 Appl. Math. Comput. 333, 76-94 (2018). MSC: 90C25 90C48 PDF BibTeX XML Cite \textit{Y. Yu} and \textit{J. Peng}, Appl. Math. Comput. 333, 76--94 (2018; Zbl 1427.90225) Full Text: DOI
Zong, Chunxiang; Tang, Yuchao; Cho, Yeol Je Convergence analysis of an inexact three-operator splitting algorithm. (English) Zbl 1423.47017 Symmetry 10, No. 11, Paper No. 563, 15 p. (2018). MSC: 47H05 47J22 47J25 47H09 PDF BibTeX XML Cite \textit{C. Zong} et al., Symmetry 10, No. 11, Paper No. 563, 15 p. (2018; Zbl 1423.47017) Full Text: DOI
Ryu, Ernest K.; Chen, Yongxin; Li, Wuchen; Osher, Stanley Vector and matrix optimal mass transport: theory, algorithm, and applications. (English) Zbl 06969623 SIAM J. Sci. Comput. 40, No. 5, A3675-A3698 (2018). MSC: 65K10 65K05 90C25 PDF BibTeX XML Cite \textit{E. K. Ryu} et al., SIAM J. Sci. Comput. 40, No. 5, A3675--A3698 (2018; Zbl 06969623) Full Text: DOI arXiv
Briceño-Arias, Luis M.; Davis, Damek Forward-backward-half forward algorithm for solving monotone inclusions. (English) Zbl 06951769 SIAM J. Optim. 28, No. 4, 2839-2871 (2018). MSC: 47H05 65K05 65K15 90C25 PDF BibTeX XML Cite \textit{L. M. Briceño-Arias} and \textit{D. Davis}, SIAM J. Optim. 28, No. 4, 2839--2871 (2018; Zbl 06951769) Full Text: DOI arXiv
Esser, Ernie; Guasch, Lluis; van Leeuwen, Tristan; Aravkin, Aleksandr Y.; Herrmann, Felix J. Total variation regularization strategies in full-waveform inversion. (English) Zbl 1404.35449 SIAM J. Imaging Sci. 11, No. 1, 376-406 (2018). MSC: 35Q86 86A22 35R30 86A60 90C26 90C25 PDF BibTeX XML Cite \textit{E. Esser} et al., SIAM J. Imaging Sci. 11, No. 1, 376--406 (2018; Zbl 1404.35449) Full Text: DOI arXiv
Tian, WenYi; Yuan, Xiaoming Convergence analysis of primal-dual based methods for total variation minimization with finite element approximation. (English) Zbl 1397.65196 J. Sci. Comput. 76, No. 1, 243-274 (2018). MSC: 65M60 65M12 49M30 65M06 65M15 65K10 PDF BibTeX XML Cite \textit{W. Tian} and \textit{X. Yuan}, J. Sci. Comput. 76, No. 1, 243--274 (2018; Zbl 1397.65196) Full Text: DOI
Ma, Feng; Ni, Mingfang A class of customized proximal point algorithms for linearly constrained convex optimization. (English) Zbl 06912443 Comput. Appl. Math. 37, No. 2, 896-911 (2018). MSC: 65K10 90C25 90C30 PDF BibTeX XML Cite \textit{F. Ma} and \textit{M. Ni}, Comput. Appl. Math. 37, No. 2, 896--911 (2018; Zbl 06912443) Full Text: DOI
Liu, Yongchao; Yuan, Xiaoming; Zeng, Shangzhi; Zhang, Jin Partial error bound conditions and the linear convergence rate of the alternating direction method of multipliers. (English) Zbl 1402.90121 SIAM J. Numer. Anal. 56, No. 4, 2095-2123 (2018). MSC: 90C25 90C33 90C22 PDF BibTeX XML Cite \textit{Y. Liu} et al., SIAM J. Numer. Anal. 56, No. 4, 2095--2123 (2018; Zbl 1402.90121) Full Text: DOI
Combettes, Patrick L. Monotone operator theory in convex optimization. (English) Zbl 06903336 Math. Program. 170, No. 1 (B), 177-206 (2018). Reviewer: Aviv Gibali (Karmiel) MSC: 47H25 49M27 65K05 90C25 PDF BibTeX XML Cite \textit{P. L. Combettes}, Math. Program. 170, No. 1 (B), 177--206 (2018; Zbl 06903336) Full Text: DOI arXiv
Ryu, Ernest K.; Li, Wuchen; Yin, Penghang; Osher, Stanley Unbalanced and partial \(L_1\) Monge-Kantorovich problem: a scalable parallel first-order method. (English) Zbl 1415.49032 J. Sci. Comput. 75, No. 3, 1596-1613 (2018). MSC: 49Q20 65K10 PDF BibTeX XML Cite \textit{E. K. Ryu} et al., J. Sci. Comput. 75, No. 3, 1596--1613 (2018; Zbl 1415.49032) Full Text: DOI
Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel Local linear convergence analysis of primal-dual splitting methods. (English) Zbl 1400.90246 Optimization 67, No. 6, 821-853 (2018). MSC: 90C25 PDF BibTeX XML Cite \textit{J. Liang} et al., Optimization 67, No. 6, 821--853 (2018; Zbl 1400.90246) Full Text: DOI arXiv
Li, Wuchen; Ryu, Ernest K.; Osher, Stanley; Yin, Wotao; Gangbo, Wilfrid A parallel method for Earth mover’s distance. (English) Zbl 1398.65124 J. Sci. Comput. 75, No. 1, 182-197 (2018). MSC: 65K05 49Q20 65Y05 PDF BibTeX XML Cite \textit{W. Li} et al., J. Sci. Comput. 75, No. 1, 182--197 (2018; Zbl 1398.65124) Full Text: DOI
Malitsky, Yura; Pock, Thomas A first-order primal-dual algorithm with linesearch. (English) Zbl 1390.49033 SIAM J. Optim. 28, No. 1, 411-432 (2018). MSC: 49M29 65K10 65Y20 90C25 PDF BibTeX XML Cite \textit{Y. Malitsky} and \textit{T. Pock}, SIAM J. Optim. 28, No. 1, 411--432 (2018; Zbl 1390.49033) Full Text: DOI arXiv
Tran-Dinh, Quoc; Fercoq, Olivier; Cevher, Volkan A smooth primal-dual optimization framework for nonsmooth composite convex minimization. (English) Zbl 1386.90109 SIAM J. Optim. 28, No. 1, 96-134 (2018). MSC: 90C25 90C06 90-08 PDF BibTeX XML Cite \textit{Q. Tran-Dinh} et al., SIAM J. Optim. 28, No. 1, 96--134 (2018; Zbl 1386.90109) Full Text: DOI arXiv
Yu, Yongchao; Peng, Jigen The matrix splitting based proximal fixed-point algorithms for quadratically constrained \(\ell_{1}\) minimization and Dantzig selector. (English) Zbl 1379.65039 Appl. Numer. Math. 125, 23-50 (2018); corrigendum ibid. 126, 199 (2018). MSC: 65K05 90C25 PDF BibTeX XML Cite \textit{Y. Yu} and \textit{J. Peng}, Appl. Numer. Math. 125, 23--50 (2018; Zbl 1379.65039) Full Text: DOI
Pang, Zhi-Feng; Fan, Jiyun; Zhang, Jun Semisupervised data classification via the Mumford-Shah-Potts-type model. (English) Zbl 07165674 Appl. Math. Modelling 50, 161-176 (2017). MSC: 65 90 PDF BibTeX XML Cite \textit{Z.-F. Pang} et al., Appl. Math. Modelling 50, 161--176 (2017; Zbl 07165674) Full Text: DOI
Liu, Zixin; Liu, Yuanan; Xiong, Lianglin Robust linear neural network for constrained quadratic optimization. (English) Zbl 1453.92017 Discrete Dyn. Nat. Soc. 2017, Article ID 5073640, 10 p. (2017). MSC: 92B20 90C20 34D20 34K20 68T05 PDF BibTeX XML Cite \textit{Z. Liu} et al., Discrete Dyn. Nat. Soc. 2017, Article ID 5073640, 10 p. (2017; Zbl 1453.92017) Full Text: DOI
Liu, Yongchao; Yuan, Xiaoming; Zeng, Shangzhi; Zhang, Jin Primal-dual hybrid gradient method for distributionally robust optimization problems. (English) Zbl 1409.90124 Oper. Res. Lett. 45, No. 6, 625-630 (2017). MSC: 90C15 90C47 91G10 PDF BibTeX XML Cite \textit{Y. Liu} et al., Oper. Res. Lett. 45, No. 6, 625--630 (2017; Zbl 1409.90124) Full Text: DOI
Wen, Meng; Peng, Jigen; Tang, Yuchao; Zhu, Chuanxi; Yue, Shigang A preconditioning technique for first-order primal-dual splitting method in convex optimization. (English) Zbl 1426.94030 Math. Probl. Eng. 2017, Article ID 3694525, 11 p. (2017). MSC: 94A08 65K05 90C25 PDF BibTeX XML Cite \textit{M. Wen} et al., Math. Probl. Eng. 2017, Article ID 3694525, 11 p. (2017; Zbl 1426.94030) Full Text: DOI
Valkonen, Tuomo; Pock, Thomas Acceleration of the PDHGM on partially strongly convex functions. (English) Zbl 1382.90080 J. Math. Imaging Vis. 59, No. 3, 394-414 (2017). MSC: 90C25 49M29 94A08 PDF BibTeX XML Cite \textit{T. Valkonen} and \textit{T. Pock}, J. Math. Imaging Vis. 59, No. 3, 394--414 (2017; Zbl 1382.90080) Full Text: DOI
He, Bingsheng; Ma, Feng; Yuan, Xiaoming An algorithmic framework of generalized primal-dual hybrid gradient methods for saddle point problems. (English) Zbl 1387.90186 J. Math. Imaging Vis. 58, No. 2, 279-293 (2017). MSC: 90C25 68U10 94A08 PDF BibTeX XML Cite \textit{B. He} et al., J. Math. Imaging Vis. 58, No. 2, 279--293 (2017; Zbl 1387.90186) Full Text: DOI
Yang, Zhimin; Chai, Yi; Chen, Tao; Qu, Jianfeng Smoothed \(\ell_1\)-regularization-based line search for sparse signal recovery. (English) Zbl 1387.94049 Soft Comput. 21, No. 16, 4813-4828 (2017). MSC: 94A12 PDF BibTeX XML Cite \textit{Z. Yang} et al., Soft Comput. 21, No. 16, 4813--4828 (2017; Zbl 1387.94049) Full Text: DOI
Zhang, Benxin; Zhu, Zhibin A primal-dual algorithm framework for convex saddle-point optimization. (English) Zbl 1382.90081 J. Inequal. Appl. 2017, Paper No. 267, 16 p. (2017). MSC: 90C25 90C33 PDF BibTeX XML Cite \textit{B. Zhang} and \textit{Z. Zhu}, J. Inequal. Appl. 2017, Paper No. 267, 16 p. (2017; Zbl 1382.90081) Full Text: DOI
Tang, Yu Chao; Zhu, Chuan Xi; Wen, Meng; Peng, Ji Gen A splitting primal-dual proximity algorithm for solving composite optimization problems. (English) Zbl 1370.90181 Acta Math. Sin., Engl. Ser. 33, No. 6, 868-886 (2017). MSC: 90C25 65K10 PDF BibTeX XML Cite \textit{Y. C. Tang} et al., Acta Math. Sin., Engl. Ser. 33, No. 6, 868--886 (2017; Zbl 1370.90181) Full Text: DOI
Latafat, Puya; Patrinos, Panagiotis Asymmetric forward-backward-adjoint splitting for solving monotone inclusions involving three operators. (English) Zbl 1406.90129 Comput. Optim. Appl. 68, No. 1, 57-93 (2017). MSC: 90C48 90C25 PDF BibTeX XML Cite \textit{P. Latafat} and \textit{P. Patrinos}, Comput. Optim. Appl. 68, No. 1, 57--93 (2017; Zbl 1406.90129) Full Text: DOI arXiv
Tao, Min; Yuan, Xiaoming Accelerated Uzawa methods for convex optimization. (English) Zbl 1360.90206 Math. Comput. 86, No. 306, 1821-1845 (2017). MSC: 90C25 94A08 PDF BibTeX XML Cite \textit{M. Tao} and \textit{X. Yuan}, Math. Comput. 86, No. 306, 1821--1845 (2017; Zbl 1360.90206) Full Text: DOI
Mei, Jin-Jin; Huang, Ting-Zhu Primal-dual splitting method for high-order model with application to image restoration. (English) Zbl 1452.94006 Appl. Math. Modelling 40, No. 3, 2322-2332 (2016). MSC: 94A08 68U10 65K10 PDF BibTeX XML Cite \textit{J.-J. Mei} and \textit{T.-Z. Huang}, Appl. Math. Modelling 40, No. 3, 2322--2332 (2016; Zbl 1452.94006) Full Text: DOI
Duan, Yuping; Chang, Huibin; Tai, Xue-Cheng Convergent non-overlapping domain decomposition methods for variational image segmentation. (English) Zbl 1409.68313 J. Sci. Comput. 69, No. 2, 532-555 (2016). MSC: 68U10 68T45 94A08 PDF BibTeX XML Cite \textit{Y. Duan} et al., J. Sci. Comput. 69, No. 2, 532--555 (2016; Zbl 1409.68313) Full Text: DOI
Chen, Dai-Qiang; Zhou, Yan; Song, Li-Juan Fixed point algorithm based on adapted metric method for convex minimization problem with application to image deblurring. (English) Zbl 1401.94014 Adv. Comput. Math. 42, No. 6, 1287-1310 (2016). MSC: 94A08 65K05 90C25 90C53 PDF BibTeX XML Cite \textit{D.-Q. Chen} et al., Adv. Comput. Math. 42, No. 6, 1287--1310 (2016; Zbl 1401.94014) Full Text: DOI
He, Hongjin; Desai, Jitamitra; Wang, Kai A primal-dual prediction-correction algorithm for saddle point optimization. (English) Zbl 1356.90160 J. Glob. Optim. 66, No. 3, 573-583 (2016). MSC: 90C47 PDF BibTeX XML Cite \textit{H. He} et al., J. Glob. Optim. 66, No. 3, 573--583 (2016; Zbl 1356.90160) Full Text: DOI
Chambolle, Antonin; Pock, Thomas On the ergodic convergence rates of a first-order primal-dual algorithm. (English) Zbl 1350.49035 Math. Program. 159, No. 1-2 (A), 253-287 (2016). Reviewer: Guy Jumarie (Montréal) MSC: 49M29 65K10 90C25 65Y20 PDF BibTeX XML Cite \textit{A. Chambolle} and \textit{T. Pock}, Math. Program. 159, No. 1--2 (A), 253--287 (2016; Zbl 1350.49035) Full Text: DOI
Jiao, Yuling; Jin, Qinian; Lu, Xiliang; Wang, Weijie Alternating direction method of multipliers for linear inverse problems. (English) Zbl 1342.65137 SIAM J. Numer. Anal. 54, No. 4, 2114-2137 (2016). MSC: 65J20 65J22 90C25 PDF BibTeX XML Cite \textit{Y. Jiao} et al., SIAM J. Numer. Anal. 54, No. 4, 2114--2137 (2016; Zbl 1342.65137) Full Text: DOI arXiv
Gorokh, Artur; Korolev, Yury; Valkonen, Tuomo Diffusion tensor imaging with deterministic error bounds. (English) Zbl 1338.92057 J. Math. Imaging Vis. 56, No. 1, 137-157 (2016). MSC: 92C55 94A08 PDF BibTeX XML Cite \textit{A. Gorokh} et al., J. Math. Imaging Vis. 56, No. 1, 137--157 (2016; Zbl 1338.92057) Full Text: DOI
Ren, Yaming; Fei, Shumin The auxiliary problem principle with self-adaptive penalty parameter for multi-area economic dispatch problem. (English) Zbl 07042242 Algorithms (Basel) 8, No. 2, 144-156 (2015). MSC: 65 90 PDF BibTeX XML Cite \textit{Y. Ren} and \textit{S. Fei}, Algorithms (Basel) 8, No. 2, 144--156 (2015; Zbl 07042242) Full Text: DOI
Zhu, Yun; Wu, Jian; Yu, Gaohang A fast proximal point algorithm for \(\ell_{1}\)-minimization problem in compressed sensing. (English) Zbl 1410.90160 Appl. Math. Comput. 270, 777-784 (2015). MSC: 90C25 94A12 62J07 90C31 PDF BibTeX XML Cite \textit{Y. Zhu} et al., Appl. Math. Comput. 270, 777--784 (2015; Zbl 1410.90160) Full Text: DOI
He, Bing-Sheng PPA-like contraction methods for convex optimization: a framework using variational inequality approach. (English) Zbl 1332.65084 J. Oper. Res. Soc. China 3, No. 4, 391-420 (2015). MSC: 65K10 90C25 90C30 PDF BibTeX XML Cite \textit{B.-S. He}, J. Oper. Res. Soc. China 3, No. 4, 391--420 (2015; Zbl 1332.65084) Full Text: DOI
Fornasier, Massimo; Rauhut, Holger Compressive sensing. (English) Zbl 1331.94019 Scherzer, Otmar (ed.), Handbook of mathematical methods in imaging. In 3 volumes. New York, NY: Springer (ISBN 978-1-4939-0789-2/print; 978-1-4939-0790-8/ebook; 978-1-4939-0791-5/print+ebook; 978-3-642-27795-5/online (updated continuously)). Springer Reference, 205-256 (2015). MSC: 94A08 65D18 68T45 68U10 PDF BibTeX XML Cite \textit{M. Fornasier} and \textit{H. Rauhut}, in: Handbook of mathematical methods in imaging. In 3 volumes. New York, NY: Springer. 205--256 (2015; Zbl 1331.94019) Full Text: DOI
Shi, Baoli; Pang, Zhi-Feng; Wu, Jun Alternating split Bregman method for the bilaterally constrained image deblurring problem. (English) Zbl 1328.94015 Appl. Math. Comput. 250, 402-414 (2015). MSC: 94A08 65D18 65K10 68U10 PDF BibTeX XML Cite \textit{B. Shi} et al., Appl. Math. Comput. 250, 402--414 (2015; Zbl 1328.94015) Full Text: DOI
Chouzenoux, Emilie; Jezierska, Anna; Pesquet, Jean-Christophe; Talbot, Hugues A convex approach for image restoration with exact Poisson-Gaussian likelihood. (English) Zbl 1343.94004 SIAM J. Imaging Sci. 8, No. 4, 2662-2682 (2015). MSC: 94A08 47A52 65F22 65K05 90C25 PDF BibTeX XML Cite \textit{E. Chouzenoux} et al., SIAM J. Imaging Sci. 8, No. 4, 2662--2682 (2015; Zbl 1343.94004) Full Text: DOI
Chen, Caihua; Chan, Raymond H.; Ma, Shiqian; Yang, Junfeng Inertial proximal ADMM for linearly constrained separable convex optimization. (English) Zbl 1328.65134 SIAM J. Imaging Sci. 8, No. 4, 2239-2267 (2015). MSC: 65K05 90C25 94A08 65K15 65D18 PDF BibTeX XML Cite \textit{C. Chen} et al., SIAM J. Imaging Sci. 8, No. 4, 2239--2267 (2015; Zbl 1328.65134) Full Text: DOI
Lorenz, Dirk A.; Pock, Thomas An inertial forward-backward algorithm for monotone inclusions. (English) Zbl 1327.47063 J. Math. Imaging Vis. 51, No. 2, 311-325 (2015). MSC: 47J25 47J22 47N10 47H05 PDF BibTeX XML Cite \textit{D. A. Lorenz} and \textit{T. Pock}, J. Math. Imaging Vis. 51, No. 2, 311--325 (2015; Zbl 1327.47063) Full Text: DOI arXiv
Davis, Damek Convergence rate analysis of primal-dual splitting schemes. (English) Zbl 1323.47069 SIAM J. Optim. 25, No. 3, 1912-1943 (2015). MSC: 47J25 47J22 47H05 65K05 65K15 90C25 PDF BibTeX XML Cite \textit{D. Davis}, SIAM J. Optim. 25, No. 3, 1912--1943 (2015; Zbl 1323.47069) Full Text: DOI arXiv
Ye, Xiao-Jing Distributed and consensus optimization for non-smooth image reconstruction. (English) Zbl 1320.49020 J. Oper. Res. Soc. China 3, No. 2, 117-138 (2015). MSC: 49M29 49M30 49N45 94A08 68U10 65Y10 93A15 PDF BibTeX XML Cite \textit{X.-J. Ye}, J. Oper. Res. Soc. China 3, No. 2, 117--138 (2015; Zbl 1320.49020) Full Text: DOI
Li, Qia; Shen, Lixin; Xu, Yuesheng; Zhang, Na Multi-step fixed-point proximity algorithms for solving a class of optimization problems arising from image processing. (English) Zbl 1326.65069 Adv. Comput. Math. 41, No. 2, 387-422 (2015). Reviewer: Nada Djuranović-Miličić (Belgrade) MSC: 65K05 94A08 90C26 65D18 PDF BibTeX XML Cite \textit{Q. Li} et al., Adv. Comput. Math. 41, No. 2, 387--422 (2015; Zbl 1326.65069) Full Text: DOI
Ouyang, Yuyuan; Chen, Yunmei; Lan, Guanghui; Pasiliao, Eduardo jun. An accelerated linearized alternating direction method of multipliers. (English) Zbl 1321.90105 SIAM J. Imaging Sci. 8, No. 1, 644-681 (2015). MSC: 90C25 90C30 65K05 PDF BibTeX XML Cite \textit{Y. Ouyang} et al., SIAM J. Imaging Sci. 8, No. 1, 644--681 (2015; Zbl 1321.90105) Full Text: DOI arXiv
Yang, Tianbao; Mahdavi, Mehrdad; Jin, Rong; Zhu, Shenghuo An efficient primal dual prox method for non-smooth optimization. (English) Zbl 1311.90188 Mach. Learn. 98, No. 3, 369-406 (2015). MSC: 90C56 68T05 49J52 PDF BibTeX XML Cite \textit{T. Yang} et al., Mach. Learn. 98, No. 3, 369--406 (2015; Zbl 1311.90188) Full Text: DOI
Gu, Guoyong; He, Bingsheng; Yuan, Xiaoming Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach. (English) Zbl 1303.90080 Comput. Optim. Appl. 59, No. 1-2, 135-161 (2014). MSC: 90C25 90C33 PDF BibTeX XML Cite \textit{G. Gu} et al., Comput. Optim. Appl. 59, No. 1--2, 135--161 (2014; Zbl 1303.90080) Full Text: DOI
Chen, Feishe; Shen, Lixin; Xu, Yuesheng; Zeng, Xueying The Moreau envelope approach for the L1/TV image denoising model. (English) Zbl 1283.94010 Inverse Probl. Imaging 8, No. 1, 53-77 (2014). MSC: 94A08 49N45 68U10 PDF BibTeX XML Cite \textit{F. Chen} et al., Inverse Probl. Imaging 8, No. 1, 53--77 (2014; Zbl 1283.94010) Full Text: DOI
Ma, Feng; Ni, Mingfang; Yu, Zhanke A new implementable prediction-correction method for monotone variational inequalities with separable structure. (English) Zbl 07095519 Abstr. Appl. Anal. 2013, Article ID 941861, 8 p. (2013). MSC: 65 49 PDF BibTeX XML Cite \textit{F. Ma} et al., Abstr. Appl. Anal. 2013, Article ID 941861, 8 p. (2013; Zbl 07095519) Full Text: DOI
Chen, Dali; Chen, Yang Quan; Xue, Dingyu Fractional-order total variation image restoration based on primal-dual algorithm. (English) Zbl 1364.94091 Abstr. Appl. Anal. 2013, Article ID 585310, 10 p. (2013). MSC: 94A08 26A33 90C90 PDF BibTeX XML Cite \textit{D. Chen} et al., Abstr. Appl. Anal. 2013, Article ID 585310, 10 p. (2013; Zbl 1364.94091) Full Text: DOI
He, Bingsheng; Yuan, Xiaoming; Zhang, Wenxing A customized proximal point algorithm for convex minimization with linear constraints. (English) Zbl 1287.90048 Comput. Optim. Appl. 56, No. 3, 559-572 (2013). MSC: 90C25 PDF BibTeX XML Cite \textit{B. He} et al., Comput. Optim. Appl. 56, No. 3, 559--572 (2013; Zbl 1287.90048) Full Text: DOI
Cai, Xingju; Han, Deren; Xu, Lingling An improved first-order primal-dual algorithm with a new correction step. (English) Zbl 1282.90232 J. Glob. Optim. 57, No. 4, 1419-1428 (2013). MSC: 90C47 90C33 PDF BibTeX XML Cite \textit{X. Cai} et al., J. Glob. Optim. 57, No. 4, 1419--1428 (2013; Zbl 1282.90232) Full Text: DOI
Condat, Laurent A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. (English) Zbl 1272.90110 J. Optim. Theory Appl. 158, No. 2, 460-479 (2013). MSC: 90C48 90C25 PDF BibTeX XML Cite \textit{L. Condat}, J. Optim. Theory Appl. 158, No. 2, 460--479 (2013; Zbl 1272.90110) Full Text: DOI
Vũ, Băng Công A splitting algorithm for dual monotone inclusions involving cocoercive operators. (English) Zbl 1284.47045 Adv. Comput. Math. 38, No. 3, 667-681 (2013). Reviewer: Simeon Reich (Haifa) MSC: 47J25 47H05 49M29 49M27 90C25 PDF BibTeX XML Cite \textit{B. C. Vũ}, Adv. Comput. Math. 38, No. 3, 667--681 (2013; Zbl 1284.47045) Full Text: DOI