Albritton, Dallas; Barker, Tobias Localised necessary conditions for singularity formation in the Navier-Stokes equations with curved boundary. (English) Zbl 1442.35292 J. Differ. Equations 269, No. 9, 7529-7573 (2020). MSC: 35Q30 76D05 35D30 35B65 PDF BibTeX XML Cite \textit{D. Albritton} and \textit{T. Barker}, J. Differ. Equations 269, No. 9, 7529--7573 (2020; Zbl 1442.35292) Full Text: DOI
Neustupa, Jiří A contribution to the theory of regularity of a weak solution to the Navier-Stokes equations via one component of velocity and other related quantities. (English) Zbl 1401.35243 J. Math. Fluid Mech. 20, No. 3, 1249-1267 (2018). MSC: 35Q30 76D03 76D05 PDF BibTeX XML Cite \textit{J. Neustupa}, J. Math. Fluid Mech. 20, No. 3, 1249--1267 (2018; Zbl 1401.35243) Full Text: DOI
Neustupa, Jiří A refinement of the local Serrin-type regularity criterion for a suitable weak solution to the Navier-Stokes equations. (English) Zbl 1304.35502 Arch. Ration. Mech. Anal. 214, No. 2, 525-544 (2014). Reviewer: Cheng He (Beijing) MSC: 35Q30 35D30 76D05 35B65 PDF BibTeX XML Cite \textit{J. Neustupa}, Arch. Ration. Mech. Anal. 214, No. 2, 525--544 (2014; Zbl 1304.35502) Full Text: DOI arXiv
Boukrouche, Mahdi; Boussetouan, Imane; Paoli, Laetitia Non-isothermal Navier-Stokes system with mixed boundary conditions and friction law: uniqueness and regularity properties. (English) Zbl 1452.76042 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 102, 168-185 (2014). MSC: 76D05 76D03 35Q30 35R35 35B45 PDF BibTeX XML Cite \textit{M. Boukrouche} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 102, 168--185 (2014; Zbl 1452.76042) Full Text: DOI