He, Ping; Ren, Yong; Zhang, Defei Asymptotic moment estimation for stochastic Lotka-Volterra model driven by \(G\)-Brownian motion. (English) Zbl 1496.60063 Stochastics 93, No. 5, 697-714 (2021). MSC: 60H10 60G65 92D25 PDF BibTeX XML Cite \textit{P. He} et al., Stochastics 93, No. 5, 697--714 (2021; Zbl 1496.60063) Full Text: DOI OpenURL
Din, Qamar; Saleem, Nafeesa; Shabbir, Muhammad Sajjad A class of discrete predator-prey interaction with bifurcation analysis and chaos control. (English) Zbl 1470.37111 Math. Model. Nat. Phenom. 15, Paper No. 60, 27 p. (2020). MSC: 37N25 39A30 39A28 92D25 PDF BibTeX XML Cite \textit{Q. Din} et al., Math. Model. Nat. Phenom. 15, Paper No. 60, 27 p. (2020; Zbl 1470.37111) Full Text: DOI OpenURL
Xu, Changjin; Li, Peiluan; Liao, Maoxin Periodic property and asymptotic behavior for a discrete ratio-dependent food-chain system with delays. (English) Zbl 1459.92106 Discrete Dyn. Nat. Soc. 2020, Article ID 9464532, 12 p. (2020). MSC: 92D25 PDF BibTeX XML Cite \textit{C. Xu} et al., Discrete Dyn. Nat. Soc. 2020, Article ID 9464532, 12 p. (2020; Zbl 1459.92106) Full Text: DOI OpenURL
Weide, Vinicius; Varriale, Maria C.; Hilker, Frank M. Hydra effect and paradox of enrichment in discrete-time predator-prey models. (English) Zbl 1425.92166 Math. Biosci. 310, 120-127 (2019). MSC: 92D25 92D40 39A60 PDF BibTeX XML Cite \textit{V. Weide} et al., Math. Biosci. 310, 120--127 (2019; Zbl 1425.92166) Full Text: DOI OpenURL
Lu, Guichen; Lu, Zhengyi Non-permanence for three-species Lotka-Volterra cooperative difference systems. (English) Zbl 1444.37077 Adv. Difference Equ. 2017, Paper No. 152, 14 p. (2017). MSC: 37N25 39A60 92D25 PDF BibTeX XML Cite \textit{G. Lu} and \textit{Z. Lu}, Adv. Difference Equ. 2017, Paper No. 152, 14 p. (2017; Zbl 1444.37077) Full Text: DOI OpenURL
Wu, Chunqing; Wong, Patricia J. Y. Global asymptotical stability of the positive equilibrium of a logistic competitive model. (English) Zbl 1465.39008 J. Difference Equ. Appl. 22, No. 8, 1137-1155 (2016). MSC: 39A30 39A60 PDF BibTeX XML Cite \textit{C. Wu} and \textit{P. J. Y. Wong}, J. Difference Equ. Appl. 22, No. 8, 1137--1155 (2016; Zbl 1465.39008) Full Text: DOI OpenURL
Lu, Hongying; Yu, Gang Permanence of a Gilpin-Ayala predator-prey system with time-dependent delay. (English) Zbl 1422.92123 Adv. Difference Equ. 2015, Paper No. 109, 15 p. (2015). MSC: 92D25 34K20 37N25 34K13 92D40 PDF BibTeX XML Cite \textit{H. Lu} and \textit{G. Yu}, Adv. Difference Equ. 2015, Paper No. 109, 15 p. (2015; Zbl 1422.92123) Full Text: DOI OpenURL
Wu, Chunqing; Wong, Patricia Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. (English) Zbl 1323.39016 Discrete Contin. Dyn. Syst., Ser. B 20, No. 9, 3255-3266 (2015). MSC: 39A30 39A60 PDF BibTeX XML Cite \textit{C. Wu} and \textit{P. Wong}, Discrete Contin. Dyn. Syst., Ser. B 20, No. 9, 3255--3266 (2015; Zbl 1323.39016) Full Text: DOI OpenURL
Wu, Chunqing; Fan, Shengming; Wong, Patricia J. Y. Theoretical studies on the effects of dispersal corridors on the permanence of discrete predator-prey models in patchy environment. (English) Zbl 1406.92534 Abstr. Appl. Anal. 2014, Article ID 140902, 16 p. (2014). MSC: 92D25 92D40 PDF BibTeX XML Cite \textit{C. Wu} et al., Abstr. Appl. Anal. 2014, Article ID 140902, 16 p. (2014; Zbl 1406.92534) Full Text: DOI OpenURL
Li, Li; Wang, Zhi-Jun Global stability of periodic solutions for a discrete predator-prey system with functional response. (English) Zbl 1269.92070 Nonlinear Dyn. 72, No. 3, 507-516 (2013). MSC: 92D40 39A23 39A60 PDF BibTeX XML Cite \textit{L. Li} and \textit{Z.-J. Wang}, Nonlinear Dyn. 72, No. 3, 507--516 (2013; Zbl 1269.92070) Full Text: DOI OpenURL
Morena, Matthew A.; Franke, John E. Predicting attenuant and resonant 2-cycles in periodically forced discrete-time two-species population models. (English) Zbl 1448.92240 J. Biol. Dyn. 6, No. 2, 782-812 (2012). MSC: 92D25 92D40 39A28 39A60 PDF BibTeX XML Cite \textit{M. A. Morena} and \textit{J. E. Franke}, J. Biol. Dyn. 6, No. 2, 782--812 (2012; Zbl 1448.92240) Full Text: DOI OpenURL
Zhou, Zheyan Global attractivity and periodic solution of a discrete multispecies cooperation and competition predator-prey system. (English) Zbl 1229.92084 Discrete Dyn. Nat. Soc. 2011, Article ID 835321, 11 p. (2011). MSC: 92D40 39A23 37N25 39A60 PDF BibTeX XML Cite \textit{Z. Zhou}, Discrete Dyn. Nat. Soc. 2011, Article ID 835321, 11 p. (2011; Zbl 1229.92084) Full Text: DOI OpenURL
Hu, Zengyun; Teng, Zhidong; Zhang, Long Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response. (English) Zbl 1215.92063 Nonlinear Anal., Real World Appl. 12, No. 4, 2356-2377 (2011). MSC: 92D40 37N25 39A28 65C20 39A60 PDF BibTeX XML Cite \textit{Z. Hu} et al., Nonlinear Anal., Real World Appl. 12, No. 4, 2356--2377 (2011; Zbl 1215.92063) Full Text: DOI OpenURL
Han, Wei; Liu, Maoxing Stability and bifurcation analysis for a discrete-time model of Lotka-Volterra type with delay. (English) Zbl 1207.92045 Appl. Math. Comput. 217, No. 12, 5449-5457 (2011). MSC: 92D40 39A28 93A30 PDF BibTeX XML Cite \textit{W. Han} and \textit{M. Liu}, Appl. Math. Comput. 217, No. 12, 5449--5457 (2011; Zbl 1207.92045) Full Text: DOI OpenURL
Li, Biwen; Xiong, Xinsheng Existence and global attractivity of periodic solution for a discrete prey-predator model with sex structure. (English) Zbl 1205.39004 Nonlinear Anal., Real World Appl. 11, No. 3, 1986-2000 (2010). Reviewer: Vu Hoang Linh (Hanoi) MSC: 39A12 37N25 92D25 PDF BibTeX XML Cite \textit{B. Li} and \textit{X. Xiong}, Nonlinear Anal., Real World Appl. 11, No. 3, 1986--2000 (2010; Zbl 1205.39004) Full Text: DOI OpenURL
Li, Zhong; Chen, Fengde Almost periodic solutions of a discrete almost periodic logistic equation. (English) Zbl 1185.39011 Math. Comput. Modelling 50, No. 1-2, 254-259 (2009). MSC: 39A24 PDF BibTeX XML Cite \textit{Z. Li} and \textit{F. Chen}, Math. Comput. Modelling 50, No. 1--2, 254--259 (2009; Zbl 1185.39011) Full Text: DOI OpenURL
Wu, Chunqing Permanence and stable periodic solution for a discrete competitive system with multidelays. (English) Zbl 1205.39017 Adv. Difference Equ. 2009, Article ID 375486, 12 p. (2009). Reviewer: Yuming Chen (Waterloo) MSC: 39A23 39A12 39A30 92D25 34K13 39A22 PDF BibTeX XML Cite \textit{C. Wu}, Adv. Difference Equ. 2009, Article ID 375486, 12 p. (2009; Zbl 1205.39017) Full Text: DOI EuDML OpenURL
Yu, Zhixiang; Li, Zhong Permanence and global attractivity of a discrete two-prey one-predator model with infinite delay. (English) Zbl 1177.37088 Discrete Dyn. Nat. Soc. 2009, Article ID 732510, 16 p. (2009). MSC: 37N25 34K60 92D25 PDF BibTeX XML Cite \textit{Z. Yu} and \textit{Z. Li}, Discrete Dyn. Nat. Soc. 2009, Article ID 732510, 16 p. (2009; Zbl 1177.37088) Full Text: DOI EuDML OpenURL
Wu, Chunqing; Cui, Jing-An Global dynamics of discrete competitive models with large intrinsic growth rates. (English) Zbl 1177.37087 Discrete Dyn. Nat. Soc. 2009, Article ID 710353, 15 p. (2009). MSC: 37N25 92D25 PDF BibTeX XML Cite \textit{C. Wu} and \textit{J.-A. Cui}, Discrete Dyn. Nat. Soc. 2009, Article ID 710353, 15 p. (2009; Zbl 1177.37087) Full Text: DOI EuDML OpenURL
Lu, Hongying Permanence of a discrete nonlinear prey-competition system with delays. (English) Zbl 1178.39005 Discrete Dyn. Nat. Soc. 2009, Article ID 605254, 15 p. (2009). MSC: 39A12 92D25 PDF BibTeX XML Cite \textit{H. Lu}, Discrete Dyn. Nat. Soc. 2009, Article ID 605254, 15 p. (2009; Zbl 1178.39005) Full Text: DOI EuDML OpenURL
Li, Xuepeng; Yang, Wensheng Permanence of a discrete \(n\)-species Schoener competition system with time delays and feedback controls. (English) Zbl 1175.93090 Adv. Difference Equ. 2009, Article ID 515706, 10 p. (2009). MSC: 93B52 39A60 92D25 PDF BibTeX XML Cite \textit{X. Li} and \textit{W. Yang}, Adv. Difference Equ. 2009, Article ID 515706, 10 p. (2009; Zbl 1175.93090) Full Text: DOI EuDML OpenURL
Chen, Yaoping; Chen, Fengde; Li, Zhong Dynamic behaviors of a general discrete nonautonomous system of plankton allelopathy with delays. (English) Zbl 1160.37432 Discrete Dyn. Nat. Soc. 2008, Article ID 310425, 22 p. (2008). MSC: 37N25 92C80 PDF BibTeX XML Cite \textit{Y. Chen} et al., Discrete Dyn. Nat. Soc. 2008, Article ID 310425, 22 p. (2008; Zbl 1160.37432) Full Text: DOI EuDML OpenURL
Chen, Fengde Permanence in a discrete Lotka-Volterra competition model with deviating arguments. (English) Zbl 1156.39300 Nonlinear Anal., Real World Appl. 9, No. 5, 2150-2155 (2008). MSC: 39A12 34C05 34C25 92D25 PDF BibTeX XML Cite \textit{F. Chen}, Nonlinear Anal., Real World Appl. 9, No. 5, 2150--2155 (2008; Zbl 1156.39300) Full Text: DOI OpenURL
Muroya, Yoshiaki New contractivity condition in a population model with piecewise constant arguments. (English) Zbl 1161.34048 J. Math. Anal. Appl. 346, No. 1, 65-81 (2008). Reviewer: Qiru Wang (Guangzhou) MSC: 34K25 34K20 92D25 PDF BibTeX XML Cite \textit{Y. Muroya}, J. Math. Anal. Appl. 346, No. 1, 65--81 (2008; Zbl 1161.34048) Full Text: DOI OpenURL
Xia, Yonghui; Cheng, Sui Sun Quasi-uniformly asymptotic stability and existence of almost periodic solutions of difference equations with applications in population dynamic systems. (English) Zbl 1141.39012 J. Difference Equ. Appl. 14, No. 1, 59-81 (2008). Reviewer: Christian Pötzsche (München) MSC: 39A11 39A10 PDF BibTeX XML Cite \textit{Y. Xia} and \textit{S. S. Cheng}, J. Difference Equ. Appl. 14, No. 1, 59--81 (2008; Zbl 1141.39012) Full Text: DOI OpenURL
Douraki, Majid Jaberi; Mashreghi, Javad On the population model of the non-autonomous logistic equation of second order with period-two parameters. (English) Zbl 1135.92026 J. Difference Equ. Appl. 14, No. 3, 231-257 (2008). MSC: 92D25 92D40 39A11 39A10 47B39 PDF BibTeX XML Cite \textit{M. J. Douraki} and \textit{J. Mashreghi}, J. Difference Equ. Appl. 14, No. 3, 231--257 (2008; Zbl 1135.92026) Full Text: DOI OpenURL
Liu, Xiaoli; Xiao, Dongmei Complex dynamic behaviors of a discrete-time predator-prey system. (English) Zbl 1130.92056 Chaos Solitons Fractals 32, No. 1, 80-94 (2007). MSC: 92D40 39A11 37N25 39A12 PDF BibTeX XML Cite \textit{X. Liu} and \textit{D. Xiao}, Chaos Solitons Fractals 32, No. 1, 80--94 (2007; Zbl 1130.92056) Full Text: DOI OpenURL
Chen, Fengde; Wu, Liping; Li, Zhong Permanence and global attractivity of the discrete Gilpin-Ayala type population model. (English) Zbl 1127.92038 Comput. Math. Appl. 53, No. 8, 1214-1227 (2007). MSC: 92D40 39A11 92D25 PDF BibTeX XML Cite \textit{F. Chen} et al., Comput. Math. Appl. 53, No. 8, 1214--1227 (2007; Zbl 1127.92038) Full Text: DOI OpenURL
Zhang, Cuimei; Chen, Wencheng; Yang, Yu Periodic solutions and global asymptotic stability of a delayed discrete predator-prey system with Holling II type functional response. (English) Zbl 1124.93049 J. Syst. Sci. Complex. 19, No. 4, 449-460 (2006). MSC: 93D20 93C55 PDF BibTeX XML Cite \textit{C. Zhang} et al., J. Syst. Sci. Complex. 19, No. 4, 449--460 (2006; Zbl 1124.93049) Full Text: DOI OpenURL
Hernández-Bermejo, Benito; Brenig, Léon Some global results on quasipolynomial discrete systems. (English) Zbl 1130.39300 Nonlinear Anal., Real World Appl. 7, No. 3, 486-496 (2006). MSC: 39A11 39A10 39A12 PDF BibTeX XML Cite \textit{B. Hernández-Bermejo} and \textit{L. Brenig}, Nonlinear Anal., Real World Appl. 7, No. 3, 486--496 (2006; Zbl 1130.39300) Full Text: DOI arXiv OpenURL
Chen, Fengde Permanence and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems. (English) Zbl 1113.92061 Appl. Math. Comput. 182, No. 1, 3-12 (2006). MSC: 92D40 39A11 37N25 PDF BibTeX XML Cite \textit{F. Chen}, Appl. Math. Comput. 182, No. 1, 3--12 (2006; Zbl 1113.92061) Full Text: DOI OpenURL
Zhou, Shu-Rong; Li, Wan-Tong; Wang, Gang Persistence and global stability of positive periodic solutions of three species food chains with omnivory. (English) Zbl 1101.92060 J. Math. Anal. Appl. 324, No. 1, 397-408 (2006). MSC: 92D40 39A11 PDF BibTeX XML Cite \textit{S.-R. Zhou} et al., J. Math. Anal. Appl. 324, No. 1, 397--408 (2006; Zbl 1101.92060) Full Text: DOI OpenURL
Liu, Zhijun; Chen, Lansun Positive periodic solution of a general discrete non-autonomous difference system of plankton allelopathy with delays. (English) Zbl 1098.92066 J. Comput. Appl. Math. 197, No. 2, 446-456 (2006). MSC: 92D40 34K13 34K60 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{L. Chen}, J. Comput. Appl. Math. 197, No. 2, 446--456 (2006; Zbl 1098.92066) Full Text: DOI OpenURL
Jing, Zhujun; Yang, Jianping Bifurcation and chaos in discrete - time predator - prey system. (English) Zbl 1085.92045 Chaos Solitons Fractals 27, No. 1, 259-277 (2006). Reviewer: Josef Hainzl (Freiburg) MSC: 92D40 37N25 37D45 92D25 37C25 37G10 37E99 PDF BibTeX XML Cite \textit{Z. Jing} and \textit{J. Yang}, Chaos Solitons Fractals 27, No. 1, 259--277 (2006; Zbl 1085.92045) Full Text: DOI OpenURL
Xu, Rui; Chen, Lansun; Hao, Feilong Periodic solutions of a discrete time Lotka–Volterra type food-chain model with delays. (English) Zbl 1081.92043 Appl. Math. Comput. 171, No. 1, 91-103 (2005). MSC: 92D40 39A10 39A11 39A12 PDF BibTeX XML Cite \textit{R. Xu} et al., Appl. Math. Comput. 171, No. 1, 91--103 (2005; Zbl 1081.92043) Full Text: DOI OpenURL
Huo, Hai-Feng; Li, Wan-Tong Existence and global stability of periodic solutions of a discrete ratio-dependent food chain model with delay. (English) Zbl 1073.93050 Appl. Math. Comput. 162, No. 3, 1333-1349 (2005). Reviewer: Alexandra Rodkina (Kingston/Jamaica) MSC: 93D20 93C55 92D25 PDF BibTeX XML Cite \textit{H.-F. Huo} and \textit{W.-T. Li}, Appl. Math. Comput. 162, No. 3, 1333--1349 (2005; Zbl 1073.93050) Full Text: DOI OpenURL
Huo, Hai-Feng; Li, Wan-Tong Permanence and global stability for nonautonomous discrete model of plankton allelopathy. (English) Zbl 1067.39009 Appl. Math. Lett. 17, No. 9, 1007-1013 (2004). Reviewer: Lothar Berg (Rostock) MSC: 39A11 92D25 92D40 PDF BibTeX XML Cite \textit{H.-F. Huo} and \textit{W.-T. Li}, Appl. Math. Lett. 17, No. 9, 1007--1013 (2004; Zbl 1067.39009) Full Text: DOI OpenURL
Huo, Hai-Feng; Li, Wan-Tong Stable periodic solution of the discrete periodic Leslie-Gower predator-prey model. (English) Zbl 1067.39008 Math. Comput. Modelling 40, No. 3-4, 261-269 (2004). Reviewer: Lothar Berg (Rostock) MSC: 39A11 92D25 PDF BibTeX XML Cite \textit{H.-F. Huo} and \textit{W.-T. Li}, Math. Comput. Modelling 40, No. 3--4, 261--269 (2004; Zbl 1067.39008) Full Text: DOI OpenURL
Huo, Haifeng; Li, Wantong Existence and global stability of periodic solutions of a discrete predator-prey system with delays. (English) Zbl 1043.92038 Appl. Math. Comput. 153, No. 2, 337-351 (2004). MSC: 92D40 39A12 37N25 39A11 34K13 PDF BibTeX XML Cite \textit{H. Huo} and \textit{W. Li}, Appl. Math. Comput. 153, No. 2, 337--351 (2004; Zbl 1043.92038) Full Text: DOI OpenURL
Muroya, Yoshiaki Persistence and global stability for discrete models of nonautonomous Lotka-Volterra type. (English) Zbl 1033.39013 J. Math. Anal. Appl. 273, No. 2, 492-511 (2002). Reviewer: Oleg Anashkin (Simferopol) MSC: 39A11 39A12 34D23 92D25 PDF BibTeX XML Cite \textit{Y. Muroya}, J. Math. Anal. Appl. 273, No. 2, 492--511 (2002; Zbl 1033.39013) Full Text: DOI OpenURL
Saito, Yasuhisa; Hara, Tadayuki; Ma, Wanbiao Harmless delays for permanence and impersistence of a Lotka-Volterra discrete predator-prey system. (English) Zbl 1005.39013 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 50, No. 5, 703-715 (2002). Reviewer: Dobiesław Bobrowski (Poznań) MSC: 39A11 92D25 39B05 PDF BibTeX XML Cite \textit{Y. Saito} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 50, No. 5, 703--715 (2002; Zbl 1005.39013) Full Text: DOI OpenURL
Wang, Wendi; Mulone, G.; Salemi, F.; Salone, V. Global stability of discrete population models with time delays and fluctuating environment. (English) Zbl 1006.92025 J. Math. Anal. Appl. 264, No. 1, 147-167 (2001). MSC: 92D25 39A11 PDF BibTeX XML Cite \textit{W. Wang} et al., J. Math. Anal. Appl. 264, No. 1, 147--167 (2001; Zbl 1006.92025) Full Text: DOI OpenURL
Wang, Wendi Global stability of discrete competition model. (English) Zbl 0974.92033 Comput. Math. Appl. 42, No. 6-7, 773-782 (2001). MSC: 92D40 39A11 PDF BibTeX XML Cite \textit{W. Wang}, Comput. Math. Appl. 42, No. 6--7, 773--782 (2001; Zbl 0974.92033) Full Text: DOI OpenURL