Miller, Evan Finite-time blowup for a Navier-Stokes model equation for the self-amplification of strain. (English) Zbl 07713389 Anal. PDE 16, No. 4, 997-1032 (2023). Reviewer: Mitsuo Higaki (Kobe) MSC: 35Q30 35B44 35B65 76D06 76N10 PDF BibTeX XML Cite \textit{E. Miller}, Anal. PDE 16, No. 4, 997--1032 (2023; Zbl 07713389) Full Text: DOI arXiv
O, Chol-Jun A remark on the regularity criterion for the 3D Navier-Stokes equations in terms of two vorticity components. (English) Zbl 1519.35227 Nonlinear Anal., Real World Appl. 71, Article ID 103840, 7 p. (2023). MSC: 35Q30 76D05 76D17 35B65 35B44 35D35 30H25 PDF BibTeX XML Cite \textit{C.-J. O}, Nonlinear Anal., Real World Appl. 71, Article ID 103840, 7 p. (2023; Zbl 1519.35227) Full Text: DOI
Neustupa, Jiří; Penel, Patrick; Yang, Minsuk Regularity criteria for weak solutions to the Navier-Stokes equations in terms of spectral projections of vorticity and velocity. (English) Zbl 07601577 J. Math. Fluid Mech. 24, No. 4, Paper No. 104, 12 p. (2022). MSC: 35Q30 76D03 76D05 35B65 35D30 PDF BibTeX XML Cite \textit{J. Neustupa} et al., J. Math. Fluid Mech. 24, No. 4, Paper No. 104, 12 p. (2022; Zbl 07601577) Full Text: DOI
Rahman, Mohammad Mahabubur; Yamazaki, Kazuo Remarks on the global regularity issue of the two-and-a-half-dimensional Hall-magnetohydrodynamics system. (English) Zbl 1498.35398 Z. Angew. Math. Phys. 73, No. 5, Paper No. 217, 29 p. (2022). MSC: 35Q30 76W05 76D05 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{M. M. Rahman} and \textit{K. Yamazaki}, Z. Angew. Math. Phys. 73, No. 5, Paper No. 217, 29 p. (2022; Zbl 1498.35398) Full Text: DOI arXiv
Miller, Evan Navier-Stokes regularity criteria in sum spaces. (English) Zbl 1487.35301 Pure Appl. Anal. 3, No. 3, 527-566 (2021). MSC: 35Q30 35B65 PDF BibTeX XML Cite \textit{E. Miller}, Pure Appl. Anal. 3, No. 3, 527--566 (2021; Zbl 1487.35301) Full Text: DOI arXiv
Miller, Evan A survey of geometric constraints on the blowup of solutions of the Navier-Stokes equation. (English) Zbl 1479.35628 J. Elliptic Parabol. Equ. 7, No. 2, 589-599 (2021). MSC: 35Q30 76D05 35B44 35B65 PDF BibTeX XML Cite \textit{E. Miller}, J. Elliptic Parabol. Equ. 7, No. 2, 589--599 (2021; Zbl 1479.35628) Full Text: DOI arXiv
Kukavica, I.; Ożański, W. S. An anisotropic regularity condition for the 3D incompressible Navier-Stokes equations for the entire exponent range. (English) Zbl 1490.35253 Appl. Math. Lett. 122, Article ID 107298, 9 p. (2021). MSC: 35Q30 76D05 35B65 35D30 PDF BibTeX XML Cite \textit{I. Kukavica} and \textit{W. S. Ożański}, Appl. Math. Lett. 122, Article ID 107298, 9 p. (2021; Zbl 1490.35253) Full Text: DOI arXiv
Miller, Evan Global regularity for solutions of the Navier-Stokes equation sufficiently close to being eigenfunctions of the Laplacian. (English) Zbl 1472.35271 Proc. Am. Math. Soc., Ser. B 8, 129-144 (2021). MSC: 35Q30 76D05 35B65 35B44 76F02 PDF BibTeX XML Cite \textit{E. Miller}, Proc. Am. Math. Soc., Ser. B 8, 129--144 (2021; Zbl 1472.35271) Full Text: DOI arXiv
Chae, D.; Wolf, J. On the Serrin-type condition on one velocity component for the Navier-Stokes equations. (English) Zbl 1472.35268 Arch. Ration. Mech. Anal. 240, No. 3, 1323-1347 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 35B65 35D30 76D05 PDF BibTeX XML Cite \textit{D. Chae} and \textit{J. Wolf}, Arch. Ration. Mech. Anal. 240, No. 3, 1323--1347 (2021; Zbl 1472.35268) Full Text: DOI arXiv
Skalak, Zdenek Locally space-time anisotropic regularity criteria for the Navier-Stokes equations in terms of two vorticity components. (English) Zbl 1466.35289 J. Math. Fluid Mech. 23, No. 2, Paper No. 41, 7 p. (2021). Reviewer: Gelu Paşa (Bucureşti) MSC: 35Q30 76D05 35B65 35D30 PDF BibTeX XML Cite \textit{Z. Skalak}, J. Math. Fluid Mech. 23, No. 2, Paper No. 41, 7 p. (2021; Zbl 1466.35289) Full Text: DOI
O, Chol-Jun Regularity criterion for weak solutions to the 3D Navier-Stokes equations via two vorticity components in \(B M O^{- 1}\). (English) Zbl 1468.35113 Nonlinear Anal., Real World Appl. 59, Article ID 103271, 12 p. (2021). MSC: 35Q30 35B65 35D30 PDF BibTeX XML Cite \textit{C.-J. O}, Nonlinear Anal., Real World Appl. 59, Article ID 103271, 12 p. (2021; Zbl 1468.35113) Full Text: DOI
Miller, Evan A locally anisotropic regularity criterion for the Navier-Stokes equation in terms of vorticity. (English) Zbl 1462.35248 Proc. Am. Math. Soc., Ser. B 8, 60-74 (2021). MSC: 35Q30 76D05 35B65 35B44 PDF BibTeX XML Cite \textit{E. Miller}, Proc. Am. Math. Soc., Ser. B 8, 60--74 (2021; Zbl 1462.35248) Full Text: DOI arXiv
Liu, Qiao The 3D Boussinesq equations with regularity in the horizontal component of the velocity. (English) Zbl 1446.35131 Bull. Korean Math. Soc. 57, No. 3, 649-660 (2020). MSC: 35Q35 35B65 76D03 PDF BibTeX XML Cite \textit{Q. Liu}, Bull. Korean Math. Soc. 57, No. 3, 649--660 (2020; Zbl 1446.35131) Full Text: DOI
Miller, Evan A regularity criterion for the Navier-Stokes equation involving only the middle eigenvalue of the strain tensor. (English) Zbl 1434.35060 Arch. Ration. Mech. Anal. 235, No. 1, 99-139 (2020); erratum ibid. 237, No. 3, 1173-1175 (2020). MSC: 35Q30 76D05 35B65 35B44 76D03 76D17 PDF BibTeX XML Cite \textit{E. Miller}, Arch. Ration. Mech. Anal. 235, No. 1, 99--139 (2020; Zbl 1434.35060) Full Text: DOI arXiv
Beirão da Veiga, Hugo; Yang, Jiaqi Regularity criteria for Navier-Stokes equations with slip boundary conditions on non-flat boundaries via two velocity components. (English) Zbl 1420.35180 Adv. Nonlinear Anal. 9, 633-643 (2020). MSC: 35Q30 35B65 76D05 PDF BibTeX XML Cite \textit{H. Beirão da Veiga} and \textit{J. Yang}, Adv. Nonlinear Anal. 9, 633--643 (2020; Zbl 1420.35180) Full Text: DOI arXiv
Beirão da Veiga, Hugo; Bemelmans, Josef; Brand, Johannes On a two components condition for regularity of the 3D Navier-Stokes equations under physical slip boundary conditions on non-flat boundaries. (English) Zbl 1420.35179 Math. Ann. 374, No. 3-4, 1559-1596 (2019). MSC: 35Q30 76D05 35B65 76D10 PDF BibTeX XML Cite \textit{H. Beirão da Veiga} et al., Math. Ann. 374, No. 3--4, 1559--1596 (2019; Zbl 1420.35179) Full Text: DOI
Yamazaki, Kazuo On the Navier-Stokes equations in scaling-invariant spaces in any dimension. (English) Zbl 1410.35144 Rev. Mat. Iberoam. 34, No. 4, 1515-1540 (2018). MSC: 35Q35 35B65 42B25 76D05 35R11 PDF BibTeX XML Cite \textit{K. Yamazaki}, Rev. Mat. Iberoam. 34, No. 4, 1515--1540 (2018; Zbl 1410.35144) Full Text: DOI
Qian, Chenyin The regularity criterion for the 3D Navier-Stokes equations involving end-point Prodi-Serrin type conditions. (English) Zbl 1379.35215 Appl. Math. Lett. 75, 37-42 (2018). MSC: 35Q30 35B65 35D30 76D05 PDF BibTeX XML Cite \textit{C. Qian}, Appl. Math. Lett. 75, 37--42 (2018; Zbl 1379.35215) Full Text: DOI
Xu, Fuyi; Li, Xinliang; Cui, Yujun; Wu, Yonghong A scaling invariant regularity criterion for the 3D incompressible magneto-hydrodynamics equations. (English) Zbl 1378.76145 Z. Angew. Math. Phys. 68, No. 6, Paper No. 125, 8 p. (2017). MSC: 76W05 35Q35 35B65 35B44 PDF BibTeX XML Cite \textit{F. Xu} et al., Z. Angew. Math. Phys. 68, No. 6, Paper No. 125, 8 p. (2017; Zbl 1378.76145) Full Text: DOI
Ri, Myong-Hwan A regularity criterion for 3D Navier-Stokes equations via one component of velocity and vorticity. (English) Zbl 1386.35330 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 63, No. 2, 353-363 (2017). MSC: 35Q30 35B35 PDF BibTeX XML Cite \textit{M.-H. Ri}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 63, No. 2, 353--363 (2017; Zbl 1386.35330) Full Text: DOI
Kukavica, Igor; Rusin, Walter; Ziane, Mohammed Localized anisotropic regularity conditions for the Navier-Stokes equations. (English) Zbl 1379.35213 J. Nonlinear Sci. 27, No. 6, 1725-1742 (2017). MSC: 35Q30 35B65 76D05 PDF BibTeX XML Cite \textit{I. Kukavica} et al., J. Nonlinear Sci. 27, No. 6, 1725--1742 (2017; Zbl 1379.35213) Full Text: DOI
Yamazaki, Kazuo On the three-dimensional magnetohydrodynamics system in scaling-invariant spaces. (English) Zbl 1345.35081 Bull. Sci. Math. 140, No. 5, 575-614 (2016). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q35 76W05 35B44 42B25 35B65 35Q86 PDF BibTeX XML Cite \textit{K. Yamazaki}, Bull. Sci. Math. 140, No. 5, 575--614 (2016; Zbl 1345.35081) Full Text: DOI arXiv
Yamazaki, Kazuo Regularity criteria of the three-dimensional MHD system involving one velocity and one vorticity component. (English) Zbl 1345.35080 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 135, 73-83 (2016). Reviewer: Ruxandra Stavre (Bucureşti) MSC: 35Q35 35B65 35Q86 76W05 86A25 PDF BibTeX XML Cite \textit{K. Yamazaki}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 135, 73--83 (2016; Zbl 1345.35080) Full Text: DOI arXiv
Yamazaki, Kazuo Regularity criteria of MHD system involving one velocity and one current density component. (English) Zbl 1307.35237 J. Math. Fluid Mech. 16, No. 3, 551-570 (2014). MSC: 35Q35 35B65 PDF BibTeX XML Cite \textit{K. Yamazaki}, J. Math. Fluid Mech. 16, No. 3, 551--570 (2014; Zbl 1307.35237) Full Text: DOI
Benbernou, Samia; Gala, Sadek; Ragusa, Maria Alessandra On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of \(BMO\) space. (English) Zbl 1303.35068 Math. Methods Appl. Sci. 37, No. 15, 2320-2325 (2014). MSC: 35Q35 35B65 76D05 76W05 35D30 PDF BibTeX XML Cite \textit{S. Benbernou} et al., Math. Methods Appl. Sci. 37, No. 15, 2320--2325 (2014; Zbl 1303.35068) Full Text: DOI
Lin, Hongxia; Li, Shan Regularity criterion for solutions to the three-dimensional Navier-Stokes equations in the turbulent channel. (English) Zbl 1300.35076 J. Math. Anal. Appl. 420, No. 2, 1803-1813 (2014). MSC: 35Q30 76D05 35B65 35D30 76F25 PDF BibTeX XML Cite \textit{H. Lin} and \textit{S. Li}, J. Math. Anal. Appl. 420, No. 2, 1803--1813 (2014; Zbl 1300.35076) Full Text: DOI
Yamazaki, Kazuo Remarks on the regularity criteria of three-dimensional magnetohydrodynamics system in terms of two velocity field components. (English) Zbl 1286.76172 J. Math. Phys. 55, No. 3, 031505, 16 p. (2014). MSC: 76W05 PDF BibTeX XML Cite \textit{K. Yamazaki}, J. Math. Phys. 55, No. 3, 031505, 16 p. (2014; Zbl 1286.76172) Full Text: DOI Link
Han, Pigong Interior regularity of weak solutions to the perturbed Navier-Stokes equations. (English) Zbl 1265.35246 Appl. Math., Praha 57, No. 5, 427-444 (2012). Reviewer: Jiří Neústupa (Praha) MSC: 35Q30 76D05 35B65 PDF BibTeX XML Cite \textit{P. Han}, Appl. Math., Praha 57, No. 5, 427--444 (2012; Zbl 1265.35246) Full Text: DOI Link
Han, Pigong Regularity and decay properties of weak solutions to Navier-Stokes equations in general domains. (English) Zbl 1185.35164 Port. Math. (N.S.) 67, No. 1, 57-74 (2010). MSC: 35Q30 35B65 76D05 76D03 35D30 PDF BibTeX XML Cite \textit{P. Han}, Port. Math. (N.S.) 67, No. 1, 57--74 (2010; Zbl 1185.35164) Full Text: DOI Link
Vasseur, Alexis Regularity criterion for 3D Navier-Stokes equations in terms of the direction of the velocity. (English) Zbl 1212.35354 Appl. Math., Praha 54, No. 1, 47-52 (2009). MSC: 35Q30 76D05 76D03 PDF BibTeX XML Cite \textit{A. Vasseur}, Appl. Math., Praha 54, No. 1, 47--52 (2009; Zbl 1212.35354) Full Text: DOI arXiv EuDML
Bae, Hyeong-Ohk; Jin, Bum Ja Regularity for the Navier-Stokes equations with slip boundary condition. (English) Zbl 1143.35079 Proc. Am. Math. Soc. 136, No. 7, 2439-2443 (2008). MSC: 35Q30 76D05 76D03 PDF BibTeX XML Cite \textit{H.-O. Bae} and \textit{B. J. Jin}, Proc. Am. Math. Soc. 136, No. 7, 2439--2443 (2008; Zbl 1143.35079) Full Text: DOI
Chae, Dongho On the regularity conditions for the Navier-Stokes and related equations. (English) Zbl 1130.35100 Rev. Mat. Iberoam. 23, No. 1, 371-384 (2007). Reviewer: Iuliana Oprea (Fort Collins) MSC: 35Q30 76D03 76D05 PDF BibTeX XML Cite \textit{D. Chae}, Rev. Mat. Iberoam. 23, No. 1, 371--384 (2007; Zbl 1130.35100) Full Text: DOI EuDML
Penel, Patrick; Pokorný, Milan Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity. (English) Zbl 1099.35101 Appl. Math., Praha 49, No. 5, 483-493 (2004). MSC: 35Q35 76D05 35B65 PDF BibTeX XML Cite \textit{P. Penel} and \textit{M. Pokorný}, Appl. Math., Praha 49, No. 5, 483--493 (2004; Zbl 1099.35101) Full Text: DOI EuDML