Karakoc, Seydi Battal Gazi; Saha, Asit; Sucu, Derya Yıldırım A collocation algorithm based on septic B-splines and bifurcation of traveling waves for Sawada-Kotera equation. (English) Zbl 07594622 Math. Comput. Simul. 203, 12-27 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{S. B. G. Karakoc} et al., Math. Comput. Simul. 203, 12--27 (2023; Zbl 07594622) Full Text: DOI OpenURL
Lu, Junfeng; Sun, Yi Numerical approaches to time fractional Boussinesq-Burgers equations. (English) Zbl 1506.35201 Fractals 29, No. 8, Article ID 2150244, 10 p. (2021). MSC: 35Q53 35Q35 35A22 35B20 26A33 35R11 65M99 PDF BibTeX XML Cite \textit{J. Lu} and \textit{Y. Sun}, Fractals 29, No. 8, Article ID 2150244, 10 p. (2021; Zbl 1506.35201) Full Text: DOI OpenURL
Singh, Gurpreet; Singh, Inderdeep New hybrid technique for solving three dimensional telegraph equations. (English) Zbl 1499.44007 Adv. Differ. Equ. Control Process. 24, No. 2, 153-165 (2021). MSC: 44A10 35E15 47J30 PDF BibTeX XML Cite \textit{G. Singh} and \textit{I. Singh}, Adv. Differ. Equ. Control Process. 24, No. 2, 153--165 (2021; Zbl 1499.44007) Full Text: DOI OpenURL
Kadkhoda, Nematollah; Khalili, Yasser An extended algebraic method to the fractional diffusive predator-prey model. (English) Zbl 1503.92057 J. Math. Ext. 15, No. 5, Paper No. 21, 17 p. (2021). Reviewer: Jian-Wen Sun (Lanzhou) MSC: 92D25 34A08 PDF BibTeX XML Cite \textit{N. Kadkhoda} and \textit{Y. Khalili}, J. Math. Ext. 15, No. 5, Paper No. 21, 17 p. (2021; Zbl 1503.92057) Full Text: DOI OpenURL
Torabi, Giklou Asadollah; Ranjbar, Mojtaba; Shafiee, Mahmoud; Roomi, Vahid VIM-Padé technique for solving nonlinear and delay initial value problems. (English) Zbl 1490.65138 Comput. Methods Differ. Equ. 9, No. 3, 749-761 (2021). MSC: 65L05 41A21 PDF BibTeX XML Cite \textit{G. A. Torabi} et al., Comput. Methods Differ. Equ. 9, No. 3, 749--761 (2021; Zbl 1490.65138) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Guo-Dong Variational principle and approximate solution for the fractal generalized Benjamin-Bona-Mahony-Burgers equation in fluid mechanics. (English) Zbl 1482.35009 Fractals 29, No. 3, Article ID 2150075, 8 p. (2021). MSC: 35A15 35A22 35Q35 35R11 PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{G.-D. Wang}, Fractals 29, No. 3, Article ID 2150075, 8 p. (2021; Zbl 1482.35009) Full Text: DOI OpenURL
Wang, Kang-Jia Variational principle and approximate solution for the generalized Burgers-Huxley equation with fractal derivative. (English) Zbl 1482.35008 Fractals 29, No. 2, Article ID 2150044, 6 p. (2021). MSC: 35A15 35K58 35R11 PDF BibTeX XML Cite \textit{K.-J. Wang}, Fractals 29, No. 2, Article ID 2150044, 6 p. (2021; Zbl 1482.35008) Full Text: DOI OpenURL
Ain, Qura Tul; Anjum, Naveed; He, Chun-Hui An analysis of time-fractional heat transfer problem using two-scale approach. (English) Zbl 1480.35386 GEM. Int. J. Geomath. 12, Paper No. 18, 10 p. (2021). MSC: 35R11 35A25 35K15 PDF BibTeX XML Cite \textit{Q. T. Ain} et al., GEM. Int. J. Geomath. 12, Paper No. 18, 10 p. (2021; Zbl 1480.35386) Full Text: DOI OpenURL
Jacobs, Byron A. High-order compact finite difference and Laplace transform method for the solution of time-fractional heat equations with dirchlet and Neumann boundary conditions. (English) Zbl 1343.65111 Numer. Methods Partial Differ. Equations 32, No. 4, 1184-1199 (2016). MSC: 65M06 35K20 35R11 35A22 44A10 PDF BibTeX XML Cite \textit{B. A. Jacobs}, Numer. Methods Partial Differ. Equations 32, No. 4, 1184--1199 (2016; Zbl 1343.65111) Full Text: DOI OpenURL
Elbeleze, Asma Ali; Kılıçman, Adem; Taib, Bachok M. Fractional variational iteration method and its application to fractional partial differential equation. (English) Zbl 1299.35059 Math. Probl. Eng. 2013, Article ID 543848, 10 p. (2013). MSC: 35C05 35R11 35Q35 35Q91 35Q53 35L15 PDF BibTeX XML Cite \textit{A. A. Elbeleze} et al., Math. Probl. Eng. 2013, Article ID 543848, 10 p. (2013; Zbl 1299.35059) Full Text: DOI OpenURL
Kafash, B.; Delavarkhalafi, A.; Karbassi, S. M. Application of variational iteration method for Hamilton-Jacobi-Bellman equations. (English) Zbl 1270.49004 Appl. Math. Modelling 37, No. 6, 3917-3928 (2013). MSC: 49J20 PDF BibTeX XML Cite \textit{B. Kafash} et al., Appl. Math. Modelling 37, No. 6, 3917--3928 (2013; Zbl 1270.49004) Full Text: DOI Link OpenURL
Abukhaled, Marwan Variational iteration method for nonlinear singular two-point boundary value problems arising in human physiology. (English) Zbl 1272.34019 J. Math. 2013, Article ID 720134, 4 p. (2013). MSC: 34A45 34B16 34A25 PDF BibTeX XML Cite \textit{M. Abukhaled}, J. Math. 2013, Article ID 720134, 4 p. (2013; Zbl 1272.34019) Full Text: DOI OpenURL
Arafa, A. A. M. Fractional differential equations in description of bacterial growth. (English) Zbl 1307.35303 Differ. Equ. Dyn. Syst. 21, No. 3, 205-214 (2013). MSC: 35Q92 35R11 92D25 35K57 PDF BibTeX XML Cite \textit{A. A. M. Arafa}, Differ. Equ. Dyn. Syst. 21, No. 3, 205--214 (2013; Zbl 1307.35303) Full Text: DOI OpenURL
Khuri, S. A.; Sayfy, A. Self-adjoint singularly perturbed boundary value problems: an adaptive variational approach. (English) Zbl 1290.65064 Math. Methods Appl. Sci. 36, No. 9, 1070-1079 (2013). Reviewer: Thomas Sonar (Braunschweig) MSC: 65L11 65L10 34B05 34E15 65L20 PDF BibTeX XML Cite \textit{S. A. Khuri} and \textit{A. Sayfy}, Math. Methods Appl. Sci. 36, No. 9, 1070--1079 (2013; Zbl 1290.65064) Full Text: DOI OpenURL
Yulita Molliq, R.; Noorani, M. S. M. Solving the fractional Rosenau-Hyman equation via variational iteration method and homotopy perturbation method. (English) Zbl 1267.35244 Int. J. Differ. Equ. 2012, Article ID 472030, 14 p. (2012). MSC: 35R11 35C10 PDF BibTeX XML Cite \textit{R. Yulita Molliq} and \textit{M. S. M. Noorani}, Int. J. Differ. Equ. 2012, Article ID 472030, 14 p. (2012; Zbl 1267.35244) Full Text: DOI OpenURL
Naher, Hasibun; Abdullah, Farah Aini New traveling wave solutions by the extended generalized Riccati equation mapping method of the \((2 + 1)\)-dimensional evolution equation. (English) Zbl 1267.35067 J. Appl. Math. 2012, Article ID 486458, 18 p. (2012). MSC: 35C07 35A25 PDF BibTeX XML Cite \textit{H. Naher} and \textit{F. A. Abdullah}, J. Appl. Math. 2012, Article ID 486458, 18 p. (2012; Zbl 1267.35067) Full Text: DOI OpenURL
Kadem, Abdelouahab; Kilicman, Adem The approximate solution of fractional Fredholm integrodifferential equations by variational iteration and homotopy perturbation methods. (English) Zbl 1242.65284 Abstr. Appl. Anal. 2012, Article ID 486193, 10 p. (2012). MSC: 65R20 65L99 45J05 PDF BibTeX XML Cite \textit{A. Kadem} and \textit{A. Kilicman}, Abstr. Appl. Anal. 2012, Article ID 486193, 10 p. (2012; Zbl 1242.65284) Full Text: DOI OpenURL
Khasawneh, Firas A.; Mann, Brian P. A spectral element approach for the stability of delay systems. (English) Zbl 1242.70007 Int. J. Numer. Methods Eng. 87, No. 6, 566-592 (2011). MSC: 70-08 70J25 65L60 PDF BibTeX XML Cite \textit{F. A. Khasawneh} and \textit{B. P. Mann}, Int. J. Numer. Methods Eng. 87, No. 6, 566--592 (2011; Zbl 1242.70007) Full Text: DOI OpenURL
Tatari, Mehdi A new efficient technique for finding the solution of initial-value problems using He’s variational iteration method. (English) Zbl 1228.65110 Int. J. Numer. Methods Biomed. Eng. 27, No. 9, 1376-1384 (2011). MSC: 65L05 34A34 PDF BibTeX XML Cite \textit{M. Tatari}, Int. J. Numer. Methods Biomed. Eng. 27, No. 9, 1376--1384 (2011; Zbl 1228.65110) Full Text: DOI OpenURL
Salkuyeh, Davod Khojasteh; Ghehsareh, Hadi Roohani Convergence of the variational iteration method for the telegraph equation with integral conditions. (English) Zbl 1232.65134 Numer. Methods Partial Differ. Equations 27, No. 6, 1442-1455 (2011). Reviewer: Vit Dolejsi (Praha) MSC: 65M70 35L05 65M12 PDF BibTeX XML Cite \textit{D. K. Salkuyeh} and \textit{H. R. Ghehsareh}, Numer. Methods Partial Differ. Equations 27, No. 6, 1442--1455 (2011; Zbl 1232.65134) Full Text: DOI OpenURL
Darvishi, M. T.; Hessari, P.; Shin, Byeong-Chun Preconditioned modified AOR method for systems of linear equations. (English) Zbl 1226.65023 Int. J. Numer. Methods Biomed. Eng. 27, No. 5, 758-769 (2011). Reviewer: Constantin Popa (Constanţa) MSC: 65F08 65F10 PDF BibTeX XML Cite \textit{M. T. Darvishi} et al., Int. J. Numer. Methods Biomed. Eng. 27, No. 5, 758--769 (2011; Zbl 1226.65023) Full Text: DOI OpenURL
Dehghan, Mehdi; Salehi, Rezvan The use of variational iteration method and Adomian decomposition method to solve the eikonal equation and its application in the reconstruction problem. (English) Zbl 1218.65112 Int. J. Numer. Methods Biomed. Eng. 27, No. 4, 524-540 (2011). MSC: 65M70 35F21 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{R. Salehi}, Int. J. Numer. Methods Biomed. Eng. 27, No. 4, 524--540 (2011; Zbl 1218.65112) Full Text: DOI OpenURL
Yulita Molliq, R.; Noorani, M. S. M.; Ahmad, R. R.; Alomari, A. K. Modified step variational iteration method for solving fractional biochemical reaction model. (English) Zbl 1222.65111 Int. J. Differ. Equ. 2011, Article ID 514384, 12 p. (2011). MSC: 65M70 92E20 35K57 65M12 35C10 35R11 PDF BibTeX XML Cite \textit{R. Yulita Molliq} et al., Int. J. Differ. Equ. 2011, Article ID 514384, 12 p. (2011; Zbl 1222.65111) Full Text: DOI EuDML OpenURL
Dehghan, Mehdi; Yousefi, S. A.; Lotfi, A. The use of He’s variational iteration method for solving the telegraph and fractional telegraph equations. (English) Zbl 1210.65173 Int. J. Numer. Methods Biomed. Eng. 27, No. 2, 219-231 (2011). MSC: 65M70 PDF BibTeX XML Cite \textit{M. Dehghan} et al., Int. J. Numer. Methods Biomed. Eng. 27, No. 2, 219--231 (2011; Zbl 1210.65173) Full Text: DOI OpenURL
Dehghan, Mehdi; Shakeri, Fatemeh Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He’s variational iteration technique. (English) Zbl 1192.65158 Int. J. Numer. Methods Biomed. Eng. 26, No. 6, 705-715 (2010). MSC: 65R20 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{F. Shakeri}, Int. J. Numer. Methods Biomed. Eng. 26, No. 6, 705--715 (2010; Zbl 1192.65158) Full Text: DOI OpenURL
Dal, Fadime Application of variational iteration method to fractional hyperbolic partial differential equations. (English) Zbl 1190.65185 Math. Probl. Eng. 2009, Article ID 824385, 10 p. (2009). MSC: 65N99 35L99 26A33 PDF BibTeX XML Cite \textit{F. Dal}, Math. Probl. Eng. 2009, Article ID 824385, 10 p. (2009; Zbl 1190.65185) Full Text: DOI EuDML OpenURL
Shakeri, Fatemeh; Dehghan, Mehdi Numerical solution of the Klein-Gordon equation via He’s variational iteration method. (English) Zbl 1179.81064 Nonlinear Dyn. 51, No. 1-2, 89-97 (2008). MSC: 81Q05 49S05 81T80 PDF BibTeX XML Cite \textit{F. Shakeri} and \textit{M. Dehghan}, Nonlinear Dyn. 51, No. 1--2, 89--97 (2008; Zbl 1179.81064) Full Text: DOI OpenURL
Ghorbani, Asghar; Alavi, Abdolsaeed Application of He’s variational iteration method to solve semidifferential equations of \(n\)th order. (English) Zbl 1155.65380 Math. Probl. Eng. 2008, Article ID 627983, 9 p. (2008). MSC: 65M70 35R10 PDF BibTeX XML Cite \textit{A. Ghorbani} and \textit{A. Alavi}, Math. Probl. Eng. 2008, Article ID 627983, 9 p. (2008; Zbl 1155.65380) Full Text: DOI EuDML OpenURL
Atay, Mehmettarık; Coşkun, Safabozkurt Effects of nonlinearity on the variational iteration solutions of nonlinear two-point boundary value problems with comparison with respect to finite element analysis. (English) Zbl 1151.76030 Math. Probl. Eng. 2008, Article ID 857296, 10 p. (2008). MSC: 76M30 76M10 76D99 PDF BibTeX XML Cite \textit{M. Atay} and \textit{S. Coşkun}, Math. Probl. Eng. 2008, Article ID 857296, 10 p. (2008; Zbl 1151.76030) Full Text: DOI EuDML OpenURL
Momani, Shaher; Odibat, Zaid Numerical solutions of the space-time fractional advection-dispersion equation. (English) Zbl 1148.76044 Numer. Methods Partial Differ. Equations 24, No. 6, 1416-1429 (2008). MSC: 76M25 76M30 76R99 76S05 86A05 PDF BibTeX XML Cite \textit{S. Momani} and \textit{Z. Odibat}, Numer. Methods Partial Differ. Equations 24, No. 6, 1416--1429 (2008; Zbl 1148.76044) Full Text: DOI OpenURL