×

A relaxation scheme for hybrid modelling of gas-particle flows. (English) Zbl 1365.76323

Summary: This paper aims at proposing a relaxation scheme that allows to obtain stable approximations for a system of partial differential equations which governs the evolution of the void fraction and the mean velocity in the particle phase of two-phase flows. This system involves the divergence of a particle kinetic tensor, which is provided by a Lagrangian code and whose components are not smooth. The simulation algorithm is based on the combined use of upwinding and relaxation techniques. The main properties of the method are given, together with the Finite Volume Godunov scheme and this approach is compared to an analogous one that was developed earlier. Some measured rates of convergence in \(L^1\)-norm are provided, for a particular choice of the kinetic tensor. To complete the picture, we present some numerical results obtained when non-smooth external data are provided to the system.

MSC:

76T15 Dusty-gas two-phase flows
76M12 Finite volume methods applied to problems in fluid mechanics
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Ambroso, A.; Chalons, C.; Coquel, F.; Galié, T., Relaxation and numerical approximation of a two-fluid two-pressure diphasic model, ESAIM:M2AN, 43, 6, 1063-1097 (2009) · Zbl 1422.76178
[2] Audebert B. Contribution à l’analyse de l’interaction onde de choc – couche limite. Université Pierre et Marie Curie, PhD thesis; 2006.; Audebert B. Contribution à l’analyse de l’interaction onde de choc – couche limite. Université Pierre et Marie Curie, PhD thesis; 2006.
[3] Berthon, C.; Coquel, F.; Hérard, J. M.; Uhlmann, M., An approximate solution of the Riemann problem for a realisable second-moment turbulent closure, Shock Waves J, 11, 4, 245-269 (2002) · Zbl 0996.76039
[4] Bouchut, F., Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for source. Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for source, Frontiers in Mathematics Series (2004), Birkhauser · Zbl 1086.65091
[5] Bouchut, F., A reduced stability condition for nonlinear relaxation to conservation laws, J Hyp Diff Eq, 1, 1, 149-170 (2004) · Zbl 1049.35127
[6] Brun, G.; Hérard, J. M.; Jeandel, D.; Uhlmann, M., An approximate Riemann solver for a class of realizable second order closures, Int J Comp Fluid Dyn, 13, 3, 223-249 (1999) · Zbl 0979.76052
[7] Buffard, T.; Gallouet, T.; Hérard, J. M., Un schéma simple pour les équations de Saint-Venant, CR Acad Sci Paris t, 326, Serie I, 385-390 (1998) · Zbl 0926.76064
[8] Buffard, T.; Gallouet, T.; Hérard, J. M., A sequel to a rough Godunov scheme: application to real gases, Comput Fluids, 29, 813-847 (2000) · Zbl 0961.76048
[9] Chalons, C.; Coulombel, J. F., Relaxation approximation of the Euler equations, J Math Anal Appl, 348, 872-893 (2008) · Zbl 1153.35002
[10] Chibbaro S, Hérard, JM, Minier JP. A novel Hybrid Moments/Moments-PDF method for turbulent two-phase flows, Final Technical Report Activity Marie Curie Project. TOK project LANGE Contract MTKD-CT-2004 509849; 2006.; Chibbaro S, Hérard, JM, Minier JP. A novel Hybrid Moments/Moments-PDF method for turbulent two-phase flows, Final Technical Report Activity Marie Curie Project. TOK project LANGE Contract MTKD-CT-2004 509849; 2006.
[11] Combe L. Simulation numérique d’Écoulements gaz-particules sur maillage nonstructuré. Institut National Polytechnique de Toulouse, PhD thesis; 1997.; Combe L. Simulation numérique d’Écoulements gaz-particules sur maillage nonstructuré. Institut National Polytechnique de Toulouse, PhD thesis; 1997.
[12] Coquel, F.; Godlewski, E.; In, A.; Perthame, B.; Rascle, P., Some new Godunov and relaxation methods for two phase flows. Some new Godunov and relaxation methods for two phase flows, Proceedings of the international conference on Godunov methods: theory and applications (2001), Kluwer Academic: Kluwer Academic Plenum Publisher · Zbl 1064.76545
[13] Coquel, F.; Godlewski, E.; Seguin, N., Relaxation of fluid systems, Math Models Methods Appl Sci, 22, 8 (2011)
[14] Courant, R.; Friedrichs, K.; Lewy, H., On the partial difference equations of mathematical physics, IBM J, 11, 215-234 (1967) · Zbl 0145.40402
[15] Dorogan K. Schémas numériques pour la modélisation hybride des écoulements turbulents gaz-particules, PhD thesis, Université Aix Marseille;2012.; Dorogan K. Schémas numériques pour la modélisation hybride des écoulements turbulents gaz-particules, PhD thesis, Université Aix Marseille;2012.
[16] Dorogan, K.; Hérard, J. M., A two-dimensional relaxation scheme for hybrid modelling of gas-particle two-phase flows, Int J Finite Volumes, 8, 1-30 (2012), <http://www.latp.univ-mrs.fr/IJFV/> · Zbl 1365.76323
[17] Dorogan K, Hérard JM, Minier JP. Development of a new scheme for hybrid modelling of gas-particle two-phase flows, EDF report H-I81-2010-2352-EN. unpublished; 2010. p. 1-50.; Dorogan K, Hérard JM, Minier JP. Development of a new scheme for hybrid modelling of gas-particle two-phase flows, EDF report H-I81-2010-2352-EN. unpublished; 2010. p. 1-50.
[18] Dorogan K, Hérard JM, Minier JP. A two-dimensional relaxation scheme for the hybrid modelling of two-phase flows. In: International Conference finite volumes for complex applications 6, Prague, 6-10 juin 2011. Published in proceedings “Finite Volumes for Complex Applications. Problems and Perspectives”, Springer-Verlag; 2011. p. 351-359. <http://www.springerlink.com/; Dorogan K, Hérard JM, Minier JP. A two-dimensional relaxation scheme for the hybrid modelling of two-phase flows. In: International Conference finite volumes for complex applications 6, Prague, 6-10 juin 2011. Published in proceedings “Finite Volumes for Complex Applications. Problems and Perspectives”, Springer-Verlag; 2011. p. 351-359. <http://www.springerlink.com/
[19] Eymard, R.; Gallouet, T.; Herbin, R., Finite volume methods, Handbook Numer Anal, VII, 713-1020 (2000) · Zbl 0981.65095
[20] Gallouet, T.; Hérard, J. M.; Seguin, N., On the use of symmetrizing variables for vacuum, Calcolo, 40, 3, 163-194 (2003) · Zbl 1072.76042
[21] Gavrilyuk, S.; Gouin, H., Geometric evolution of the Reynolds stress tensor, Int J Eng Sci, 59, 65-73 (2012) · Zbl 1423.76137
[22] Godlewski, E.; Raviart, P. A., Numerical approximation of hyperbolic systems of conservation laws. Numerical approximation of hyperbolic systems of conservation laws, AMS, 118 (1996), Springer · Zbl 0860.65075
[23] Godunov, S. K., A difference method for numerical calculation of discontinuous equations of hydrodynamics, Sbornik, 271-300 (1959) · Zbl 0171.46204
[24] Helluy, P.; Hérard, J. M.; Mathis, H.; Muller, S., A simple parameter-free entropy correction for approximate Riemann solvers, CR Mécanique, 338, 493-498 (2010) · Zbl 1419.76458
[25] Hérard JM. A relaxation tool to compute hybrid Euler-Lagrange compressible models. AIAA Paper 2006-2872, 36th AIAA FD conference; 2006. <http://www.aiaa.org; Hérard JM. A relaxation tool to compute hybrid Euler-Lagrange compressible models. AIAA Paper 2006-2872, 36th AIAA FD conference; 2006. <http://www.aiaa.org
[26] Hérard JM, Minier JP, Chibbaro S. A finite volume scheme for hybrid turbulent two-phase flow models. In: AIAA Paper 2007-4587, 18th AIAA CFD conference; 2007. <http://www.aiaa.org; Hérard JM, Minier JP, Chibbaro S. A finite volume scheme for hybrid turbulent two-phase flow models. In: AIAA Paper 2007-4587, 18th AIAA CFD conference; 2007. <http://www.aiaa.org
[27] Hérard JM, Uhlmann M, Van der Velden DE. Numerical techniques for solving hybrid Eulerian-Lagrangian models for particulate flows. EDF report H-I81-2009-3961-EN, unpublished; 2009. p. 1-50.; Hérard JM, Uhlmann M, Van der Velden DE. Numerical techniques for solving hybrid Eulerian-Lagrangian models for particulate flows. EDF report H-I81-2009-3961-EN, unpublished; 2009. p. 1-50.
[28] Jin, S.; Xin, Z., The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Commun Pure Appl Math, 48, 235-276 (1995) · Zbl 0826.65078
[29] Lax, P. D., Hyperbolic systems of conservation laws, II Comm. Pure Appl. Math., 10, 537-566 (1957) · Zbl 0081.08803
[30] LeVeque, R., Numerical methods for conservation laws. Numerical methods for conservation laws, Lectures in Mathematics, ETH (1990), Birkhauser · Zbl 0723.65067
[31] Minier, J. P.; Peirano, E., The pdf approach to polydispersed turbulent two-phase flows, Phys Rep, 352, 1-3, 1-214 (2001) · Zbl 0971.76039
[32] Muradoglu, M.; Jenny, P.; Pope, S. B.; Caughey, D. A., A consistent hybrid finite-volume/particle method for the pdf equations of turbulent reactive flows, J Comput Phys, 154, 342-371 (1999) · Zbl 0953.76062
[33] Øksendal, B., Stochastic differential equations. an introduction with applications (1995), Springer: Springer Berlin · Zbl 0841.60037
[34] Peirano, E.; Chibbaro, S.; Pozorski, J.; Minier, J. P., Mean-field/PDF numerical approach for polydispersed turbulent two-phase flows, Progr Energy Combust Sci, 32, 315-371 (2006), <http://www.sciencedirect.com>
[35] Saleh K, Coquel F, Seguin N. Relaxation and numerical approximation for fluid flows in a nozzle. Submitted to publication, also in EDF report H-I81-2011-01469-EN; 2011.; Saleh K, Coquel F, Seguin N. Relaxation and numerical approximation for fluid flows in a nozzle. Submitted to publication, also in EDF report H-I81-2011-01469-EN; 2011. · Zbl 1246.76074
[36] Suliciu, I., On the thermodynamics of fluids with relaxation and phase transitions. Fluids with relaxation, Int J Eng Sci, 36, 921-947 (1998) · Zbl 1210.76019
[37] Yong, W.-A., Singular perturbations of first-order hyperbolic systems with stiff source terms, J Differen Equat, 155, 1, 89-132 (1999) · Zbl 0942.35110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.