×

The zero Mach number limit of the three-dimensional compressible viscous magnetohydrodynamic equations. (English) Zbl 1437.76054

Summary: This paper is concerned with the zero Mach number limit of the three-dimensional compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible viscous magnetohydrodynamic equations, first the convergence-stability principle is established. Then it is shown that, when the Mach number is sufficiently small, the periodic initial value problems of the equations have a unique smooth solution in the time interval, where the incompressible viscous magnetohydrodynamic equations have a smooth solution. When the latter has a global smooth solution, the maximal existence time for the former tends to infinity as the Mach number goes to zero. Moreover, the authors prove the convergence of smooth solutions of the equations towards those of the incompressible viscous magnetohydrodynamic equations with a sharp convergence rate.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35Q35 PDEs in connection with fluid mechanics
35Q60 PDEs in connection with optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alazard, T., Low Mach number limit of the full Navier-Stokes equations, Arch. Rational Mech. Anal., 180, 2006, 1-73. · Zbl 1108.76061 · doi:10.1007/s00205-005-0393-2
[2] Bresch, D., Desjardins, B., Grenier, E. and Lin, C. K., Low Mach number limit of viscous ploytropic flows: Formal asymptotics in the periodic case, Stud. Appl. Math., 109, 2002, 125-140. · Zbl 1114.76347 · doi:10.1111/1467-9590.01440
[3] Chen, G. Q. and Frid, H., Divergence-measure fields and hyperbolic conservation laws, Arch. Rational Mech. Anal., 147, 1999, 294-307. · Zbl 0942.35111 · doi:10.1007/s002050050146
[4] Danchin, R., Low Mach number limit for compressible flows with periodic boundary conditions, Amer. J. Math., 124, 2002, 1153-1219. · Zbl 1048.35075 · doi:10.1353/ajm.2002.0036
[5] Diaz, J. I. and Lerena, M. B., On the inviscid and non-resistive limit for the equations of incompressible magnetohydrodynamic, Math. Methods Appl. Sci., 12, 2002, 1401-1402. · Zbl 1038.76061 · doi:10.1142/S0218202502002173
[6] Dontelli, D. and Trivisa, K., From the dynamics of gaseous stars to the incompressible Euler equations, J. Differential Equations,245, 2008, 1356-1385. · Zbl 1157.35064 · doi:10.1016/j.jde.2008.05.018
[7] Hoff, D., Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions, Comm. Pure Appl. Math., 55, 2002, 1365-1407. · Zbl 1020.76046 · doi:10.1002/cpa.10046
[8] Hu, X. P. and Wang, D. H., Low Mach number limit to the three-dimensional full compressible magnetohydrodynamic flows, SIAM J. Math. Anal., 41, 2009, 1272-1294. · Zbl 1188.35146 · doi:10.1137/080723983
[9] Jiang, S., Ju, Q. C. and Li, F. C., Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 297, 2010, 371-400. · Zbl 1195.35253 · doi:10.1007/s00220-010-0992-0
[10] Jiang, S., Ju, Q. C. and Li, F. C., Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients, SIAM J. Math. Anal., 43, 2010, 2539-2553. · Zbl 1257.76164 · doi:10.1137/100785168
[11] Jiang, S., Ju, Q. C. and Li, F. C., Low Mach limit for the multi-dimensional full magnetohydrodynamic equations, Nonlinearity,25, 2012, 1351-1365. · Zbl 1376.76077 · doi:10.1088/0951-7715/25/5/1351
[12] Jiang, S., Ju, Q. C. and Li, F. C., Incompressible limit of the non-isentropic ideal magnetohydrodynamic equations, 2013. arXiv: 1111.2926 · Zbl 1114.76347
[13] Li, F. C. and Yu, H. J., Optimal decay rate of classical solution to the compressible magnetohyrtodynamic equations, Proc. Roy. Soc. Edinburgh, 141A, 2011, 109-126. · Zbl 1218.35038 · doi:10.1017/S0308210509001632
[14] Majda, A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New York, 1984. · Zbl 0537.76001 · doi:10.1007/978-1-4612-1116-7
[15] Masmoudi, N., Incompressible, inviscid limit of the compressible Navier-Stokes system, Ann. Inst. H. Poincare Anal. Non Lineaire,18, 2001, 199-224. · Zbl 0991.35058 · doi:10.1016/S0294-1449(00)00123-2
[16] Matsumura, A. and Nishida, T., The initial-value problem for the equation of motion of compressible viscous and heat-conductive fluids, Proc. Jpn. Acad., 55A, 1979, 337-342. · Zbl 0447.76053 · doi:10.3792/pjaa.55.337
[17] Matsumura, A. and Nishida, T., The initial-value problem for the equation of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20, 1980, 67-104. · Zbl 0429.76040
[18] Polovin, R. V. and Demutskii, V. P., Fundamentals of Magnetohydrodynamics, New York, Consultants Bureau, 1990.
[19] Sermange, M. and Temam, R., Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36, 1983, 635-664. · Zbl 0524.76099 · doi:10.1002/cpa.3160360506
[20] Yong, W. A., Singular perturbations of first-order hyperbolic systems with stiff source terms, J. Differential Equations,155, 1999, 89-132. · Zbl 0942.35110 · doi:10.1006/jdeq.1998.3584
[21] Yong, W. A., Basic aspects of hyperbolic relaxation systems, Advances in the theory of shock waves, H. Freistuhler and A. Szepessy (eds.), Progr. Nonlinear Differential Equations Appl., 47, Birkhauser Boston, Boston, 2001, 259-305. · Zbl 1017.35068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.