Herrera-Hernández, E. C.; Aguilar-Madera, C. G.; Espinosa-Paredes, G.; Hernández, D. Modeling single-phase fluid flow in porous media through non-local fractal continuum equation. (English) Zbl 07642135 J. Eng. Math. 138, Paper No. 8, 18 p. (2023). MSC: 76-XX 35-XX PDF BibTeX XML Cite \textit{E. C. Herrera-Hernández} et al., J. Eng. Math. 138, Paper No. 8, 18 p. (2023; Zbl 07642135) Full Text: DOI OpenURL
Abdelkawy, M. A.; Soluma, E. M.; Al-Dayel, Ibrahim; Baleanu, Dumitru Spectral solutions for a class of nonlinear wave equations with Riesz fractional based on Legendre collocation technique. (English) Zbl 07640827 J. Comput. Appl. Math. 423, Article ID 114970, 15 p. (2023). MSC: 65M70 65D32 42C10 74D10 74J30 35Q74 26A33 35R11 PDF BibTeX XML Cite \textit{M. A. Abdelkawy} et al., J. Comput. Appl. Math. 423, Article ID 114970, 15 p. (2023; Zbl 07640827) Full Text: DOI OpenURL
Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Shukla, Anurag; Sooppy Nisar, Kottakkaran Discussion on the approximate controllability of nonlocal fractional derivative by Mittag-Leffler kernel to stochastic differential systems. (English) Zbl 07639897 Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 27, 35 p. (2023). MSC: 34A08 34B10 34K37 58C30 93B05 93E03 PDF BibTeX XML Cite \textit{C. Dineshkumar} et al., Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 27, 35 p. (2023; Zbl 07639897) Full Text: DOI OpenURL
Boutiara, A.; Alzabut, J.; Selvam, A. G. M.; Vignesh, D. Analysis and applications of sequential hybrid \(\psi\)-Hilfer fractional differential equations and inclusions in Banach algebra. (English) Zbl 07639075 Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 12, 32 p. (2023). MSC: 34A08 26A33 34A34 PDF BibTeX XML Cite \textit{A. Boutiara} et al., Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 12, 32 p. (2023; Zbl 07639075) Full Text: DOI OpenURL
Park, Daehan Weighted maximal \(L_q (L_p)\)-regularity theory for time-fractional diffusion-wave equations with variable coefficients. (English) Zbl 07638777 J. Evol. Equ. 23, No. 1, Paper No. 12, 35 p. (2023). MSC: 35B65 35B45 35R09 45K05 26A33 46B70 47B38 PDF BibTeX XML Cite \textit{D. Park}, J. Evol. Equ. 23, No. 1, Paper No. 12, 35 p. (2023; Zbl 07638777) Full Text: DOI arXiv OpenURL
González-Cervantes, José Oscar; Bory-Reyes, Juan A bicomplex \((\vartheta,\varphi)\)-weighted fractional Borel-Pompeiu type formula. (English) Zbl 07637716 J. Math. Anal. Appl. 520, No. 2, Article ID 126923, 18 p. (2023). MSC: 30Gxx 26Axx 34Axx PDF BibTeX XML Cite \textit{J. O. González-Cervantes} and \textit{J. Bory-Reyes}, J. Math. Anal. Appl. 520, No. 2, Article ID 126923, 18 p. (2023; Zbl 07637716) Full Text: DOI arXiv OpenURL
Volchenkov, Dimitri Uncertainty in epidemic models based on a three-sided coin. (English) Zbl 07597347 Volchenkov, Dimitri (ed.) et al., New perspectives on nonlinear dynamics and complexity. Selected papers based on the presentations at the first conference, online, Central Time Zone, USA, November 23–25, 2020. Cham: Springer. Nonlinear Syst. Complex. 35, 165-179 (2023). MSC: 94Cxx PDF BibTeX XML Cite \textit{D. Volchenkov}, Nonlinear Syst. Complex. 35, 165--179 (2023; Zbl 07597347) Full Text: DOI OpenURL
Vázquez, Luis; Velasco, M. Pilar; Vázquez-Poletti, J. Luis; Jiménez, Salvador; Usero, David From radiation and space exploration to the fractional calculus. (English) Zbl 1498.26017 Volchenkov, Dimitri (ed.) et al., New perspectives on nonlinear dynamics and complexity. Selected papers based on the presentations at the first conference, online, Central Time Zone, USA, November 23–25, 2020. Cham: Springer. Nonlinear Syst. Complex. 35, 89-104 (2023). MSC: 26A33 35L05 35Q41 37M05 60J60 PDF BibTeX XML Cite \textit{L. Vázquez} et al., Nonlinear Syst. Complex. 35, 89--104 (2023; Zbl 1498.26017) Full Text: DOI OpenURL
Cernea, Aurelian A sufficient condition for local controllability of a Caputo type fractional differential inclusion. (English) Zbl 07645178 An. Univ. Vest Timiș., Ser. Mat.-Inform. 58, No. 2, 12-21 (2022). MSC: 34A60 26A33 34A08 PDF BibTeX XML Cite \textit{A. Cernea}, An. Univ. Vest Timiș., Ser. Mat.-Inform. 58, No. 2, 12--21 (2022; Zbl 07645178) Full Text: DOI OpenURL
Atmania, Rahima Existence and stability for a semilinear fractional differential equation with two delays. (English) Zbl 07645174 An. Univ. Vest Timiș., Ser. Mat.-Inform. 58, No. 1, 111-125 (2022). MSC: 34A08 34A12 34K37 34K20 PDF BibTeX XML Cite \textit{R. Atmania}, An. Univ. Vest Timiș., Ser. Mat.-Inform. 58, No. 1, 111--125 (2022; Zbl 07645174) Full Text: DOI OpenURL
Mohan Raja, M.; Vijayakumar, V. Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order \(r\in (1,2)\) with sectorial operators. (English) Zbl 07641511 Chaos Solitons Fractals 159, Article ID 112127, 8 p. (2022). MSC: 34Axx 34Kxx 47Hxx PDF BibTeX XML Cite \textit{M. Mohan Raja} and \textit{V. Vijayakumar}, Chaos Solitons Fractals 159, Article ID 112127, 8 p. (2022; Zbl 07641511) Full Text: DOI OpenURL
Zafar, Zain Ul Abadin; Zaib, Sumera; Hussain, Muhammad Tanveer; Tunç, Cemil; Javeed, Shumaila Analysis and numerical simulation of tuberculosis model using different fractional derivatives. (English) Zbl 07641409 Chaos Solitons Fractals 160, Article ID 112202, 12 p. (2022). MSC: 92Dxx 92Cxx 34Axx PDF BibTeX XML Cite \textit{Z. U. A. Zafar} et al., Chaos Solitons Fractals 160, Article ID 112202, 12 p. (2022; Zbl 07641409) Full Text: DOI OpenURL
Mahata, Shibendu; Herencsar, Norbert; Alagoz, Baris Baykant; Yeroglu, Celaleddin Optimal \(F\)-domain stabilization technique for reduction of commensurate fractional-order SISO systems. (English) Zbl 07636552 Fract. Calc. Appl. Anal. 25, No. 2, 803-821 (2022). MSC: 93B11 93C05 93C15 26A33 PDF BibTeX XML Cite \textit{S. Mahata} et al., Fract. Calc. Appl. Anal. 25, No. 2, 803--821 (2022; Zbl 07636552) Full Text: DOI OpenURL
Atıcı, F. M.; Jonnalagadda, J. M. An eigenvalue problem in fractional \(h\)-discrete calculus. (English) Zbl 07636544 Fract. Calc. Appl. Anal. 25, No. 2, 630-647 (2022). MSC: 26A33 39A12 39A13 39A70 PDF BibTeX XML Cite \textit{F. M. Atıcı} and \textit{J. M. Jonnalagadda}, Fract. Calc. Appl. Anal. 25, No. 2, 630--647 (2022; Zbl 07636544) Full Text: DOI OpenURL
Emamirad, Hassan; Rougirel, Arnaud Delsarte equation for Caputo operator of fractional calculus. (English) Zbl 07636542 Fract. Calc. Appl. Anal. 25, No. 2, 584-607 (2022). MSC: 26A33 33E12 34A08 34K37 35R11 PDF BibTeX XML Cite \textit{H. Emamirad} and \textit{A. Rougirel}, Fract. Calc. Appl. Anal. 25, No. 2, 584--607 (2022; Zbl 07636542) Full Text: DOI OpenURL
Zhang, Hui; Zeng, Fanhai; Jiang, Xiaoyun; Karniadakis, George Em Convergence analysis of the time-stepping numerical methods for time-fractional nonlinear subdiffusion equations. (English) Zbl 07636538 Fract. Calc. Appl. Anal. 25, No. 2, 453-487 (2022). MSC: 65M06 35R11 65M15 65M12 26A33 PDF BibTeX XML Cite \textit{H. Zhang} et al., Fract. Calc. Appl. Anal. 25, No. 2, 453--487 (2022; Zbl 07636538) Full Text: DOI arXiv OpenURL
He, Jia Wei; Zhou, Yong Hölder regularity for non-autonomous fractional evolution equations. (English) Zbl 07636535 Fract. Calc. Appl. Anal. 25, No. 2, 378-407 (2022). MSC: 35R11 26A33 34A08 47D06 34K37 PDF BibTeX XML Cite \textit{J. W. He} and \textit{Y. Zhou}, Fract. Calc. Appl. Anal. 25, No. 2, 378--407 (2022; Zbl 07636535) Full Text: DOI OpenURL
Petráš, Ivo The fractional-order Lorenz-type systems: a review. (English) Zbl 07636534 Fract. Calc. Appl. Anal. 25, No. 2, 362-377 (2022). MSC: 34A08 26A33 PDF BibTeX XML Cite \textit{I. Petráš}, Fract. Calc. Appl. Anal. 25, No. 2, 362--377 (2022; Zbl 07636534) Full Text: DOI OpenURL
Leonenko, Nikolai; Podlubny, Igor Monte Carlo method for fractional-order differentiation. (English) Zbl 07636533 Fract. Calc. Appl. Anal. 25, No. 2, 346-361 (2022). MSC: 65C05 65D25 26A33 PDF BibTeX XML Cite \textit{N. Leonenko} and \textit{I. Podlubny}, Fract. Calc. Appl. Anal. 25, No. 2, 346--361 (2022; Zbl 07636533) Full Text: DOI OpenURL
Diop, Amadou On approximate controllability of multi-term time fractional measure differential equations with nonlocal conditions. (English) Zbl 07636172 Fract. Calc. Appl. Anal. 25, No. 5, 2090-2112 (2022). MSC: 34K37 47N20 93B05 34H05 26A33 PDF BibTeX XML Cite \textit{A. Diop}, Fract. Calc. Appl. Anal. 25, No. 5, 2090--2112 (2022; Zbl 07636172) Full Text: DOI OpenURL
Sin, Chung-Sik; Rim, Jin-U; Choe, Hyon-Sok Initial-boundary value problems for multi-term time-fractional wave equations. (English) Zbl 07636168 Fract. Calc. Appl. Anal. 25, No. 5, 1994-2019 (2022). MSC: 35R11 33E12 35B30 35B40 35C10 35D30 45K05 26A33 PDF BibTeX XML Cite \textit{C.-S. Sin} et al., Fract. Calc. Appl. Anal. 25, No. 5, 1994--2019 (2022; Zbl 07636168) Full Text: DOI OpenURL
Hu, Jiuhua; Alikhanov, Anatoly; Efendiev, Yalchin; Leung, Wing Tat Partially explicit time discretization for time fractional diffusion equation. (English) Zbl 07636164 Fract. Calc. Appl. Anal. 25, No. 5, 1908-1924 (2022). MSC: 65M12 65M06 26A33 65M60 35R11 PDF BibTeX XML Cite \textit{J. Hu} et al., Fract. Calc. Appl. Anal. 25, No. 5, 1908--1924 (2022; Zbl 07636164) Full Text: DOI arXiv OpenURL
Biolek, Dalibor; Garrappa, Roberto; Biolková, Viera Impulse response of commensurate fractional-order systems: multiple complex poles. (English) Zbl 07636161 Fract. Calc. Appl. Anal. 25, No. 5, 1837-1851 (2022). MSC: 34K37 33E12 44A10 26A33 PDF BibTeX XML Cite \textit{D. Biolek} et al., Fract. Calc. Appl. Anal. 25, No. 5, 1837--1851 (2022; Zbl 07636161) Full Text: DOI OpenURL
Mahata, Shibendu; Herencsar, Norbert; Kubanek, David; Goknar, I. Cem Optimized fractional-order Butterworth filter design in complex \(F\)-plane. (English) Zbl 07636159 Fract. Calc. Appl. Anal. 25, No. 5, 1801-1817 (2022). MSC: 94A12 93B51 26A33 PDF BibTeX XML Cite \textit{S. Mahata} et al., Fract. Calc. Appl. Anal. 25, No. 5, 1801--1817 (2022; Zbl 07636159) Full Text: DOI OpenURL
Postavaru, Octavian; Dragoi, Flavius; Toma, Antonela Considerations regarding the accuracy of fractional numerical computations. (English) Zbl 07636158 Fract. Calc. Appl. Anal. 25, No. 5, 1785-1800 (2022). MSC: 34A08 26A33 PDF BibTeX XML Cite \textit{O. Postavaru} et al., Fract. Calc. Appl. Anal. 25, No. 5, 1785--1800 (2022; Zbl 07636158) Full Text: DOI OpenURL
Rodrigo, Marianito A unified way to solve IVPs and IBVPs for the time-fractional diffusion-wave equation. (English) Zbl 07636157 Fract. Calc. Appl. Anal. 25, No. 5, 1757-1784 (2022). MSC: 35R11 35K05 35L05 26A33 PDF BibTeX XML Cite \textit{M. Rodrigo}, Fract. Calc. Appl. Anal. 25, No. 5, 1757--1784 (2022; Zbl 07636157) Full Text: DOI arXiv OpenURL
Domoshnitsky, Alexander; Padhi, Seshadev; Srivastava, Satyam Narayan Vallée-Poussin theorem for fractional functional differential equations. (English) Zbl 07636152 Fract. Calc. Appl. Anal. 25, No. 4, 1630-1650 (2022). MSC: 34K37 34K40 34K38 34K10 26A33 47N20 PDF BibTeX XML Cite \textit{A. Domoshnitsky} et al., Fract. Calc. Appl. Anal. 25, No. 4, 1630--1650 (2022; Zbl 07636152) Full Text: DOI OpenURL
Zheng, Xiangcheng Approximate inversion for Abel integral operators of variable exponent and applications to fractional Cauchy problems. (English) Zbl 07636150 Fract. Calc. Appl. Anal. 25, No. 4, 1585-1603 (2022). MSC: 45P05 26A33 34A08 PDF BibTeX XML Cite \textit{X. Zheng}, Fract. Calc. Appl. Anal. 25, No. 4, 1585--1603 (2022; Zbl 07636150) Full Text: DOI arXiv OpenURL
Cardone, Angelamaria; Frasca-Caccia, Gianluca Numerical conservation laws of time fractional diffusion PDEs. (English) Zbl 07636145 Fract. Calc. Appl. Anal. 25, No. 4, 1459-1483 (2022). MSC: 65M06 65M70 35R11 26A33 PDF BibTeX XML Cite \textit{A. Cardone} and \textit{G. Frasca-Caccia}, Fract. Calc. Appl. Anal. 25, No. 4, 1459--1483 (2022; Zbl 07636145) Full Text: DOI arXiv OpenURL
Loreti, Paola; Sforza, Daniela Trace regularity for biharmonic evolution equations with Caputo derivatives. (English) Zbl 07636143 Fract. Calc. Appl. Anal. 25, No. 4, 1404-1425 (2022). MSC: 26A33 35R11 PDF BibTeX XML Cite \textit{P. Loreti} and \textit{D. Sforza}, Fract. Calc. Appl. Anal. 25, No. 4, 1404--1425 (2022; Zbl 07636143) Full Text: DOI arXiv OpenURL
Diethelm, Kai; Thai, Ha Duc; Tuan, Hoang The Asymptotic behaviour of solutions to non-commensurate fractional-order planar systems. (English) Zbl 07636140 Fract. Calc. Appl. Anal. 25, No. 4, 1324-1360 (2022). MSC: 34A08 26A33 34D20 34K37 34K20 PDF BibTeX XML Cite \textit{K. Diethelm} et al., Fract. Calc. Appl. Anal. 25, No. 4, 1324--1360 (2022; Zbl 07636140) Full Text: DOI arXiv OpenURL
Liu, Yongjian; Liu, Zhenhai; Peng, Sisi; Wen, Ching-Feng Optimal feedback control for a class of fractional evolution equations with history-dependent operators. (English) Zbl 07636131 Fract. Calc. Appl. Anal. 25, No. 3, 1108-1130 (2022). MSC: 35R11 26A33 93B52 PDF BibTeX XML Cite \textit{Y. Liu} et al., Fract. Calc. Appl. Anal. 25, No. 3, 1108--1130 (2022; Zbl 07636131) Full Text: DOI OpenURL
Zhou, Dongpeng; Zhou, Xia; Liu, Qihuai Stability and stabilization of short memory fractional differential equations with delayed impulses. (English) Zbl 07636129 Fract. Calc. Appl. Anal. 25, No. 3, 1055-1072 (2022). MSC: 34K37 34A08 26A33 93C15 PDF BibTeX XML Cite \textit{D. Zhou} et al., Fract. Calc. Appl. Anal. 25, No. 3, 1055--1072 (2022; Zbl 07636129) Full Text: DOI OpenURL
Hai, Xudong; Yu, Yongguang; Xu, Conghui; Ren, Guojian Stability analysis of fractional differential equations with the short-term memory property. (English) Zbl 07636125 Fract. Calc. Appl. Anal. 25, No. 3, 962-994 (2022). MSC: 34A08 34D20 26A33 PDF BibTeX XML Cite \textit{X. Hai} et al., Fract. Calc. Appl. Anal. 25, No. 3, 962--994 (2022; Zbl 07636125) Full Text: DOI OpenURL
Zhou, Yong; He, Jia Wei A Cauchy problem for fractional evolution equations with Hilfer’s fractional derivative on semi-infinite interval. (English) Zbl 07636124 Fract. Calc. Appl. Anal. 25, No. 3, 924-961 (2022). MSC: 34A08 26A33 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. W. He}, Fract. Calc. Appl. Anal. 25, No. 3, 924--961 (2022; Zbl 07636124) Full Text: DOI OpenURL
Leonenko, Nikolai; Podlubny, Igor Monte Carlo method for fractional-order differentiation extended to higher orders. (English) Zbl 07636120 Fract. Calc. Appl. Anal. 25, No. 3, 841-857 (2022). MSC: 65C05 26A33 PDF BibTeX XML Cite \textit{N. Leonenko} and \textit{I. Podlubny}, Fract. Calc. Appl. Anal. 25, No. 3, 841--857 (2022; Zbl 07636120) Full Text: DOI OpenURL
Mazloum, Jalil; Hadian Siahkal-Mahalle, Behrang A time-splitting local meshfree approach for time-fractional anisotropic diffusion equation: application in image denoising. (English) Zbl 07636102 Adv. Contin. Discrete Models 2022, Paper No. 56, 19 p. (2022). MSC: 65M30 65M06 65M55 PDF BibTeX XML Cite \textit{J. Mazloum} and \textit{B. Hadian Siahkal-Mahalle}, Adv. Contin. Discrete Models 2022, Paper No. 56, 19 p. (2022; Zbl 07636102) Full Text: DOI OpenURL
Abed-Elhameed, Tarek M.; Aboelenen, Tarek Mittag-Leffler stability, control, and synchronization for chaotic generalized fractional-order systems. (English) Zbl 07636096 Adv. Contin. Discrete Models 2022, Paper No. 50, 16 p. (2022). MSC: 26A33 33E12 37C75 37D45 PDF BibTeX XML Cite \textit{T. M. Abed-Elhameed} and \textit{T. Aboelenen}, Adv. Contin. Discrete Models 2022, Paper No. 50, 16 p. (2022; Zbl 07636096) Full Text: DOI OpenURL
Avazzadeh, Zakieh; Nikan, Omid; Tenreiro Machado, José; Rasoulizadeh, Mohammad Navaz Numerical analysis of time-fractional Sobolev equation for fluid-driven processes in impermeable rocks. (English) Zbl 07636094 Adv. Contin. Discrete Models 2022, Paper No. 48, 14 p. (2022). MSC: 39-XX 34-XX PDF BibTeX XML Cite \textit{Z. Avazzadeh} et al., Adv. Contin. Discrete Models 2022, Paper No. 48, 14 p. (2022; Zbl 07636094) Full Text: DOI OpenURL
D’Ovidio, Mirko Fractional boundary value problems. (English) Zbl 07635801 Fract. Calc. Appl. Anal. 25, No. 1, 29-59 (2022). MSC: 60J50 60J55 35R11 26A33 PDF BibTeX XML Cite \textit{M. D'Ovidio}, Fract. Calc. Appl. Anal. 25, No. 1, 29--59 (2022; Zbl 07635801) Full Text: DOI arXiv OpenURL
Liu, Jun; Fu, Hongfei An efficient QSC approximation of variable-order time-fractional mobile-immobile diffusion equations with variably diffusive coefficients. (English) Zbl 07632593 J. Sci. Comput. 93, No. 2, Paper No. 44, 38 p. (2022). MSC: 65M70 65M06 65N35 65D07 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{J. Liu} and \textit{H. Fu}, J. Sci. Comput. 93, No. 2, Paper No. 44, 38 p. (2022; Zbl 07632593) Full Text: DOI OpenURL
Karaman, Bahar The global stability investigation of the mathematical design of a fractional-order HBV infection. (English) Zbl 07632369 J. Appl. Math. Comput. 68, No. 6, 4759-4775 (2022). MSC: 65Lxx 34C60 34A08 92D30 PDF BibTeX XML Cite \textit{B. Karaman}, J. Appl. Math. Comput. 68, No. 6, 4759--4775 (2022; Zbl 07632369) Full Text: DOI OpenURL
Aravind, R. Vijay; Balasubramaniam, P. Global asymptotic stability of delayed fractional-order complex-valued fuzzy cellular neural networks with impulsive disturbances. (English) Zbl 1499.92003 J. Appl. Math. Comput. 68, No. 6, 4713-4731 (2022). MSC: 92B20 34K20 34K37 34K45 68T07 PDF BibTeX XML Cite \textit{R. V. Aravind} and \textit{P. Balasubramaniam}, J. Appl. Math. Comput. 68, No. 6, 4713--4731 (2022; Zbl 1499.92003) Full Text: DOI OpenURL
Guo, Jing; Pan, Qing; Xu, Da; Qiu, Wenlin A spectral order method for solving the nonlinear fourth-order time-fractional problem. (English) Zbl 07632364 J. Appl. Math. Comput. 68, No. 6, 4645-4667 (2022). MSC: 65M70 65M60 65M06 65N35 65N30 65M12 65N15 26A33 35R11 PDF BibTeX XML Cite \textit{J. Guo} et al., J. Appl. Math. Comput. 68, No. 6, 4645--4667 (2022; Zbl 07632364) Full Text: DOI OpenURL
Bekkouche, M. Moumen; Mansouri, I.; Ahmed, A. A. Azeb Numerical solution of fractional boundary value problem with Caputo-Fabrizio and its fractional integral. (English) Zbl 07632349 J. Appl. Math. Comput. 68, No. 6, 4305-4316 (2022). MSC: 34A08 34B15 45D05 65R20 PDF BibTeX XML Cite \textit{M. M. Bekkouche} et al., J. Appl. Math. Comput. 68, No. 6, 4305--4316 (2022; Zbl 07632349) Full Text: DOI OpenURL
Fakhar-Izadi, Farhad; Shabgard, Narges Time-space spectral Galerkin method for time-fractional fourth-order partial differential equations. (English) Zbl 07632347 J. Appl. Math. Comput. 68, No. 6, 4253-4272 (2022). MSC: 65-XX 26A33 34K28 65M12 65M60 65M70 PDF BibTeX XML Cite \textit{F. Fakhar-Izadi} and \textit{N. Shabgard}, J. Appl. Math. Comput. 68, No. 6, 4253--4272 (2022; Zbl 07632347) Full Text: DOI OpenURL
Gevgeşoğlu, Murat; Bolat, Yaşar Stability criteria for Volterra type linear nabla fractional difference equations. (English) Zbl 07632342 J. Appl. Math. Comput. 68, No. 6, 4161-4171 (2022). MSC: 39A30 39A13 PDF BibTeX XML Cite \textit{M. Gevgeşoğlu} and \textit{Y. Bolat}, J. Appl. Math. Comput. 68, No. 6, 4161--4171 (2022; Zbl 07632342) Full Text: DOI OpenURL
Swati; Nilam Fractional order SIR epidemic model with Beddington-De Angelis incidence and Holling type II treatment rate for COVID-19. (English) Zbl 1499.92141 J. Appl. Math. Comput. 68, No. 6, 3835-3859 (2022). MSC: 92D30 34A08 34D20 34D23 37C75 65L05 PDF BibTeX XML Cite \textit{Swati} and \textit{Nilam}, J. Appl. Math. Comput. 68, No. 6, 3835--3859 (2022; Zbl 1499.92141) Full Text: DOI OpenURL
Bulavatsky, V. M. Some two-dimensional boundary-value problems of filtration dynamics for models with proportional Caputo derivative. (English. Ukrainian original) Zbl 07630521 Cybern. Syst. Anal. 58, No. 4, 552-563 (2022); translation from Kibern. Sist. Anal. 58, No. 4, 70-81 (2022). MSC: 35Rxx PDF BibTeX XML Cite \textit{V. M. Bulavatsky}, Cybern. Syst. Anal. 58, No. 4, 552--563 (2022; Zbl 07630521); translation from Kibern. Sist. Anal. 58, No. 4, 70--81 (2022) Full Text: DOI OpenURL
Yang, Zhiwei Numerical approximation and error analysis for Caputo-Hadamard fractional stochastic differential equations. (English) Zbl 07628881 Z. Angew. Math. Phys. 73, No. 6, Paper No. 253, 15 p. (2022). MSC: 65C30 60H35 60J65 35B65 35B35 34A08 26A33 35R11 PDF BibTeX XML Cite \textit{Z. Yang}, Z. Angew. Math. Phys. 73, No. 6, Paper No. 253, 15 p. (2022; Zbl 07628881) Full Text: DOI OpenURL
Deshi, A. B.; Gudodagi, G. A. Numerical solution of Bagley-Torvik, nonlinear and higher order fractional differential equations using Haar wavelet. (English) Zbl 1499.65347 S\(\vec{\text{e}}\)MA J. 79, No. 4, 663-675 (2022). MSC: 65L60 34A08 65R20 65T60 PDF BibTeX XML Cite \textit{A. B. Deshi} and \textit{G. A. Gudodagi}, S\(\vec{\text{e}}\)MA J. 79, No. 4, 663--675 (2022; Zbl 1499.65347) Full Text: DOI OpenURL
Izadi, Mohammad A computational algorithm for simulating fractional order relaxation-oscillation equation. (English) Zbl 07627125 S\(\vec{\text{e}}\)MA J. 79, No. 4, 647-661 (2022). MSC: 26A33 33F05 34A08 34C26 PDF BibTeX XML Cite \textit{M. Izadi}, S\(\vec{\text{e}}\)MA J. 79, No. 4, 647--661 (2022; Zbl 07627125) Full Text: DOI OpenURL
Afreen, A.; Raheem, A. Study of a nonlinear system of fractional differential equations with deviated arguments via Adomian decomposition method. (English) Zbl 07626577 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 269, 17 p. (2022). MSC: 34K37 34K07 PDF BibTeX XML Cite \textit{A. Afreen} and \textit{A. Raheem}, Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 269, 17 p. (2022; Zbl 07626577) Full Text: DOI OpenURL
Pandey, Hem Raj; Phaijoo, Ganga Ram; Gurung, Dil Bahadur Fractional-order dengue disease epidemic model in Nepal. (English) Zbl 07626567 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 259, 22 p. (2022). MSC: 92D30 34A08 34D20 PDF BibTeX XML Cite \textit{H. R. Pandey} et al., Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 259, 22 p. (2022; Zbl 07626567) Full Text: DOI OpenURL
Yang, Fan; Xu, Jian-Ming; Li, Xiao-Xiao Regularization methods for identifying the initial value of time fractional pseudo-parabolic equation. (English) Zbl 07625685 Calcolo 59, No. 4, Paper No. 47, 39 p. (2022). MSC: 35R25 35K70 35R11 35R30 47A52 PDF BibTeX XML Cite \textit{F. Yang} et al., Calcolo 59, No. 4, Paper No. 47, 39 p. (2022; Zbl 07625685) Full Text: DOI OpenURL
Kaliraj, K.; Priya, P. K. Lakshmi; Ravichandran, C. An explication of finite-time stability for fractional delay model with neutral impulsive conditions. (English) Zbl 07622863 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 161, 17 p. (2022). MSC: 34K37 34K40 34K45 34K25 34K35 93D40 PDF BibTeX XML Cite \textit{K. Kaliraj} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 161, 17 p. (2022; Zbl 07622863) Full Text: DOI OpenURL
Raja, M. Mohan; Shukla, Anurag; Nieto, Juan J.; Vijayakumar, V.; Sooppy Nisar, Kottakkaran A note on the existence and controllability results for fractional integrodifferential inclusions of order \(r\in(1, 2]\) with impulses. (English) Zbl 07622852 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 150, 41 p. (2022). MSC: 34K37 34K30 34K45 34K35 93B05 47D09 47H10 PDF BibTeX XML Cite \textit{M. M. Raja} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 150, 41 p. (2022; Zbl 07622852) Full Text: DOI OpenURL
Atta, A. G.; Youssri, Y. H. Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel. (English) Zbl 07622774 Comput. Appl. Math. 41, No. 8, Paper No. 381, 19 p. (2022). MSC: 65M70 45K05 33C45 PDF BibTeX XML Cite \textit{A. G. Atta} and \textit{Y. H. Youssri}, Comput. Appl. Math. 41, No. 8, Paper No. 381, 19 p. (2022; Zbl 07622774) Full Text: DOI OpenURL
Ahmadova, Arzu; Huseynov, Ismail; Mahmudov, Nazim I. Perturbation theory for fractional evolution equations in a Banach space. (English) Zbl 07622234 Semigroup Forum 105, No. 3, 583-618 (2022). MSC: 20Mxx PDF BibTeX XML Cite \textit{A. Ahmadova} et al., Semigroup Forum 105, No. 3, 583--618 (2022; Zbl 07622234) Full Text: DOI arXiv OpenURL
Zhang, Min; Zhang, Guo-Feng Fast solution method and simulation for the 2D time-space fractional Black-Scholes equation governing European two-asset option pricing. (English) Zbl 07621824 Numer. Algorithms 91, No. 4, 1559-1575 (2022). MSC: 65Nxx 65F10 65N20 65F50 65N22 PDF BibTeX XML Cite \textit{M. Zhang} and \textit{G.-F. Zhang}, Numer. Algorithms 91, No. 4, 1559--1575 (2022; Zbl 07621824) Full Text: DOI OpenURL
Asadzadeh, M.; Saray, B. N. On a multiwavelet spectral element method for integral equation of a generalized Cauchy problem. (English) Zbl 07621790 BIT 62, No. 4, 1383-1416 (2022). MSC: 65Lxx 34A08 42C40 PDF BibTeX XML Cite \textit{M. Asadzadeh} and \textit{B. N. Saray}, BIT 62, No. 4, 1383--1416 (2022; Zbl 07621790) Full Text: DOI OpenURL
Oprzȩdkiewicz, Krzysztof; Mitkowski, Wojciech Fractional order state space models of the one-dimensional heat transfer process. (English) Zbl 07620058 Kulczycki, Piotr (ed.) et al., Fractional dynamical systems: methods, algorithms and applications. Cham: Springer. Stud. Syst. Decis. Control 402, 361-397 (2022). MSC: 93-XX PDF BibTeX XML Cite \textit{K. Oprzȩdkiewicz} and \textit{W. Mitkowski}, Stud. Syst. Decis. Control 402, 361--397 (2022; Zbl 07620058) Full Text: DOI OpenURL
Kaczorek, Tadeusz Global stability of nonlinear fractional dynamical systems. (English) Zbl 07620055 Kulczycki, Piotr (ed.) et al., Fractional dynamical systems: methods, algorithms and applications. Cham: Springer. Stud. Syst. Decis. Control 402, 273-306 (2022). MSC: 93-XX PDF BibTeX XML Cite \textit{T. Kaczorek}, Stud. Syst. Decis. Control 402, 273--306 (2022; Zbl 07620055) Full Text: DOI OpenURL
Kaczorek, Tadeusz; Sajewski, Łukasz Some specific properties of positive standard and fractional interval systems. (English) Zbl 07620054 Kulczycki, Piotr (ed.) et al., Fractional dynamical systems: methods, algorithms and applications. Cham: Springer. Stud. Syst. Decis. Control 402, 247-269 (2022). MSC: 93-XX PDF BibTeX XML Cite \textit{T. Kaczorek} and \textit{Ł. Sajewski}, Stud. Syst. Decis. Control 402, 247--269 (2022; Zbl 07620054) Full Text: DOI OpenURL
Ostalczyk, Piotr Variable-, fractional-order linear system state-space description transformation. (English) Zbl 07620051 Kulczycki, Piotr (ed.) et al., Fractional dynamical systems: methods, algorithms and applications. Cham: Springer. Stud. Syst. Decis. Control 402, 175-197 (2022). MSC: 93-XX PDF BibTeX XML Cite \textit{P. Ostalczyk}, Stud. Syst. Decis. Control 402, 175--197 (2022; Zbl 07620051) Full Text: DOI OpenURL
Dzieliński, Andrzej; Sierociuk, Dominik; Malesza, Wiktor; Macias, Michał; Wiraszka, Michał; Sakrajda, Piotr Fractional variable-order derivative and difference operators and their applications to dynamical systems modelling. (English) Zbl 07620049 Kulczycki, Piotr (ed.) et al., Fractional dynamical systems: methods, algorithms and applications. Cham: Springer. Stud. Syst. Decis. Control 402, 107-133 (2022). MSC: 93-XX PDF BibTeX XML Cite \textit{A. Dzieliński} et al., Stud. Syst. Decis. Control 402, 107--133 (2022; Zbl 07620049) Full Text: DOI OpenURL
Domek, Stefan Mixed logical dynamical modeling of discrete-time hybrid fractional systems. (English) Zbl 07620048 Kulczycki, Piotr (ed.) et al., Fractional dynamical systems: methods, algorithms and applications. Cham: Springer. Stud. Syst. Decis. Control 402, 77-105 (2022). MSC: 93-XX PDF BibTeX XML Cite \textit{S. Domek}, Stud. Syst. Decis. Control 402, 77--105 (2022; Zbl 07620048) Full Text: DOI OpenURL
Ostalczyk, Piotr; Pawluszewicz, Ewa Fractional systems: theoretical foundations. (English) Zbl 07620047 Kulczycki, Piotr (ed.) et al., Fractional dynamical systems: methods, algorithms and applications. Cham: Springer. Stud. Syst. Decis. Control 402, 27-73 (2022). MSC: 93-XX PDF BibTeX XML Cite \textit{P. Ostalczyk} and \textit{E. Pawluszewicz}, Stud. Syst. Decis. Control 402, 27--73 (2022; Zbl 07620047) Full Text: DOI OpenURL
Stanisławski, Rafał Fractional systems: state-of-the-art. (English) Zbl 07620046 Kulczycki, Piotr (ed.) et al., Fractional dynamical systems: methods, algorithms and applications. Cham: Springer. Stud. Syst. Decis. Control 402, 3-25 (2022). MSC: 93-XX PDF BibTeX XML Cite \textit{R. Stanisławski}, Stud. Syst. Decis. Control 402, 3--25 (2022; Zbl 07620046) Full Text: DOI OpenURL
Fedorov, V. E.; Turov, M. M. Sectorial tuples of operators and quasilinear fractional equations with multi-term linear part. (English) Zbl 07616996 Lobachevskii J. Math. 43, No. 6, 1502-1512 (2022). MSC: 34A08 34G20 34A12 PDF BibTeX XML Cite \textit{V. E. Fedorov} and \textit{M. M. Turov}, Lobachevskii J. Math. 43, No. 6, 1502--1512 (2022; Zbl 07616996) Full Text: DOI OpenURL
Plekhanova, M. V.; Izhberdeeva, E. M. Local unique solvability of a quasilinear equation with the Dzhrbashyan-Nersesyan derivatives. (English) Zbl 07616984 Lobachevskii J. Math. 43, No. 6, 1379-1388 (2022). MSC: 34A08 34G20 34A12 PDF BibTeX XML Cite \textit{M. V. Plekhanova} and \textit{E. M. Izhberdeeva}, Lobachevskii J. Math. 43, No. 6, 1379--1388 (2022; Zbl 07616984) Full Text: DOI OpenURL
Boyko, K. V.; Fedorov, V. E. The Cauchy problem for a class of multi-term equations with Gerasimov-Caputo derivatives. (English) Zbl 07616975 Lobachevskii J. Math. 43, No. 6, 1293-1302 (2022). Reviewer: Arzu Ahmadova (Essen) MSC: 34G10 34A08 34A12 PDF BibTeX XML Cite \textit{K. V. Boyko} and \textit{V. E. Fedorov}, Lobachevskii J. Math. 43, No. 6, 1293--1302 (2022; Zbl 07616975) Full Text: DOI OpenURL
Zhang, Hong-Yi; Zhang, Yu-Feng On the time-fractional coupled burger equation: Lie symmetry reductions, approximate solutions and conservation laws. (English) Zbl 07613877 Waves Random Complex Media 32, No. 5, 2297-2312 (2022). MSC: 74-XX 78-XX PDF BibTeX XML Cite \textit{H.-Y. Zhang} and \textit{Y.-F. Zhang}, Waves Random Complex Media 32, No. 5, 2297--2312 (2022; Zbl 07613877) Full Text: DOI OpenURL
Tian, Xue; Zhang, Yi Caputo \(\Delta\)-type fractional time-scales Noether theorem of Birkhoffian systems. (English) Zbl 07612090 Acta Mech. 233, No. 11, 4487-4503 (2022). MSC: 70Hxx 26Axx 49Kxx PDF BibTeX XML Cite \textit{X. Tian} and \textit{Y. Zhang}, Acta Mech. 233, No. 11, 4487--4503 (2022; Zbl 07612090) Full Text: DOI OpenURL
Benhassine, Abderrazek; Khachnaoui, Khaled New contributions for new class of Hamiltonian systems. (English) Zbl 07610711 J. Elliptic Parabol. Equ. 8, No. 2, 711-721 (2022). MSC: 37J45 PDF BibTeX XML Cite \textit{A. Benhassine} and \textit{K. Khachnaoui}, J. Elliptic Parabol. Equ. 8, No. 2, 711--721 (2022; Zbl 07610711) Full Text: DOI OpenURL
Torres Ledesma, César E.; Nyamoradi, Nemat \((k,\psi)\)-Hilfer variational problem. (English) Zbl 07610710 J. Elliptic Parabol. Equ. 8, No. 2, 681-709 (2022). MSC: 26A33 34A12 PDF BibTeX XML Cite \textit{C. E. Torres Ledesma} and \textit{N. Nyamoradi}, J. Elliptic Parabol. Equ. 8, No. 2, 681--709 (2022; Zbl 07610710) Full Text: DOI OpenURL
Gu, Qiling; Chen, Yanping; Huang, Yunqing Superconvergence analysis of a two-grid finite element method for nonlinear time-fractional diffusion equations. (English) Zbl 1500.65056 Comput. Appl. Math. 41, No. 8, Paper No. 361, 20 p. (2022). MSC: 65M55 65M60 65M06 65N30 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{Q. Gu} et al., Comput. Appl. Math. 41, No. 8, Paper No. 361, 20 p. (2022; Zbl 1500.65056) Full Text: DOI OpenURL
Ribeiro, M. A.; Lenz, W. B.; Tusset, A. M.; Balthazar, Jose Manoel; Oliveira, C.; Varanis, M. Fractional dynamics of harvester with nonideal source excitation. (English) Zbl 07608826 Balthazar, Jose Manoel (ed.), Nonlinear vibrations excited by limited power sources. Cham: Springer. Mech. Mach. Sci. 116, 357-367 (2022). MSC: 70Q05 34A08 26A33 PDF BibTeX XML Cite \textit{M. A. Ribeiro} et al., Mech. Mach. Sci. 116, 357--367 (2022; Zbl 07608826) Full Text: DOI OpenURL
Kaczorek, Tadeusz; Sajewski, Łukasz Exponential decay of processes in positive nonlinear systems and fractional feedback systems. (English) Zbl 1500.93049 Shi, Peng (ed.) et al., Complex systems: spanning control and computational cybernetics: foundations. Dedicated to Professor Georgi M. Dimirovski on his anniversary. Cham: Springer. Stud. Syst. Decis. Control 414, 157-179 (2022). MSC: 93C28 93C10 93B52 26A33 PDF BibTeX XML Cite \textit{T. Kaczorek} and \textit{Ł. Sajewski}, Stud. Syst. Decis. Control 414, 157--179 (2022; Zbl 1500.93049) Full Text: DOI OpenURL
Diop, Amadou Existence of mild solutions for multi-term time fractional measure differential equations. (English) Zbl 1497.34089 J. Anal. 30, No. 4, 1609-1623 (2022). MSC: 34G20 34K37 39A99 46G99 PDF BibTeX XML Cite \textit{A. Diop}, J. Anal. 30, No. 4, 1609--1623 (2022; Zbl 1497.34089) Full Text: DOI OpenURL
Awonusika, Richard Olu; Ariwayo, Afolabi Gabriel Descriptions of fractional coefficients of Jacobi polynomial expansions. (English) Zbl 07608555 J. Anal. 30, No. 4, 1567-1608 (2022). MSC: 33C05 33C45 34A08 35A08 35C05 35C10 35C15 PDF BibTeX XML Cite \textit{R. O. Awonusika} and \textit{A. G. Ariwayo}, J. Anal. 30, No. 4, 1567--1608 (2022; Zbl 07608555) Full Text: DOI OpenURL
Kolokoltsov, V. N.; Troeva, M. S. Fractional kinetic equations. (English. Russian original) Zbl 07606803 Math. Notes 112, No. 4, 561-575 (2022); translation from Mat. Zametki 112, No. 4, 567-585 (2022). MSC: 35Q82 82C41 82C22 35A01 35A02 PDF BibTeX XML Cite \textit{V. N. Kolokoltsov} and \textit{M. S. Troeva}, Math. Notes 112, No. 4, 561--575 (2022; Zbl 07606803); translation from Mat. Zametki 112, No. 4, 567--585 (2022) Full Text: DOI arXiv OpenURL
Ilyas, Asim; Malik, Salman A. An inverse source problem for anomalous diffusion equation with generalized fractional derivative in time. (English) Zbl 07606081 Acta Appl. Math. 181, Paper No. 15, 15 p. (2022). MSC: 26A33 80A23 65N21 42A16 33E12 PDF BibTeX XML Cite \textit{A. Ilyas} and \textit{S. A. Malik}, Acta Appl. Math. 181, Paper No. 15, 15 p. (2022; Zbl 07606081) Full Text: DOI OpenURL
Zhang, Zhengqi; Zhou, Zhi Backward diffusion-wave problem: stability, regularization, and approximation. (English) Zbl 07605327 SIAM J. Sci. Comput. 44, No. 5, A3183-A3216 (2022). Reviewer: Christian Clason (Graz) MSC: 65M32 65M60 65M06 65N30 65M15 65D32 35B65 35A01 35A02 26A33 35R11 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{Z. Zhou}, SIAM J. Sci. Comput. 44, No. 5, A3183--A3216 (2022; Zbl 07605327) Full Text: DOI arXiv OpenURL
Safarov, Akbar R. Estimates for Mittag-Leffler functions with smooth phase depending on two variables. (English) Zbl 07604845 J. Sib. Fed. Univ., Math. Phys. 15, No. 4, 459-466 (2022). MSC: 42Bxx 58Kxx 11Lxx PDF BibTeX XML Cite \textit{A. R. Safarov}, J. Sib. Fed. Univ., Math. Phys. 15, No. 4, 459--466 (2022; Zbl 07604845) Full Text: DOI arXiv MNR OpenURL
Sharma, Madhukant; Dubey, Shruti Existence of solutions to Sobolev type nonlocal nonlinear functional integrodifferential equations involving Caputo derivative. (English) Zbl 07603315 Differ. Equ. Dyn. Syst. 30, No. 4, 845-860 (2022). MSC: 26A33 34A08 34A12 34G20 34K37 35A01 35A02 35A09 35R09 35R11 PDF BibTeX XML Cite \textit{M. Sharma} and \textit{S. Dubey}, Differ. Equ. Dyn. Syst. 30, No. 4, 845--860 (2022; Zbl 07603315) Full Text: DOI OpenURL
Jeet, Kamal; Sukavanam, N.; Bahuguna, D. Monotone iterative technique for nonlocal impulsive finite delay differential equations of fractional order. (English) Zbl 07603313 Differ. Equ. Dyn. Syst. 30, No. 4, 801-816 (2022). MSC: 34K30 34K37 34K45 34K07 47N20 PDF BibTeX XML Cite \textit{K. Jeet} et al., Differ. Equ. Dyn. Syst. 30, No. 4, 801--816 (2022; Zbl 07603313) Full Text: DOI OpenURL
Obukhovskii, Valeri; Zecca, Pietro; Afanasova, Maria On some boundary value problems for fractional feedback control systems. (English) Zbl 07603312 Differ. Equ. Dyn. Syst. 30, No. 4, 777-800 (2022). MSC: 34G25 34B10 34A08 34H05 47A06 47H08 34A09 47H11 49K27 PDF BibTeX XML Cite \textit{V. Obukhovskii} et al., Differ. Equ. Dyn. Syst. 30, No. 4, 777--800 (2022; Zbl 07603312) Full Text: DOI OpenURL
Brugnano, Luigi; Iavernaro, Felice A general framework for solving differential equations. (English) Zbl 07603240 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 68, No. 2, 243-258 (2022). MSC: 65P10 65L05 PDF BibTeX XML Cite \textit{L. Brugnano} and \textit{F. Iavernaro}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 68, No. 2, 243--258 (2022; Zbl 07603240) Full Text: DOI OpenURL
Chandra, Subhash; Abbas, Syed Analysis of fractal dimension of mixed Riemann-Liouville integral. (English) Zbl 07602903 Numer. Algorithms 91, No. 3, 1021-1046 (2022). MSC: 26A33 28A80 28A78 26A30 PDF BibTeX XML Cite \textit{S. Chandra} and \textit{S. Abbas}, Numer. Algorithms 91, No. 3, 1021--1046 (2022; Zbl 07602903) Full Text: DOI arXiv OpenURL
Amin, Rohul; Shah, Kamal; Mlaiki, Nabil; Yüzbaşı, Şuayip; Abdeljawad, Thabet; Hussain, Arshad Existence and numerical analysis using Haar wavelet for fourth-order multi-term fractional differential equations. (English) Zbl 07601622 Comput. Appl. Math. 41, No. 7, Paper No. 329, 15 p. (2022). MSC: 65M22 PDF BibTeX XML Cite \textit{R. Amin} et al., Comput. Appl. Math. 41, No. 7, Paper No. 329, 15 p. (2022; Zbl 07601622) Full Text: DOI OpenURL
Tian, Qingqing; Zhang, Haixiang; Yang, Xuehua; Jiang, Xiaoxuan An implicit difference scheme for the fourth-order nonlinear non-local PIDEs with a weakly singular kernel. (English) Zbl 07601621 Comput. Appl. Math. 41, No. 7, Paper No. 328, 32 p. (2022). MSC: 45K05 65M06 PDF BibTeX XML Cite \textit{Q. Tian} et al., Comput. Appl. Math. 41, No. 7, Paper No. 328, 32 p. (2022; Zbl 07601621) Full Text: DOI OpenURL
Saeed, Ihsan Lateef; Javidi, Mohammad; Heris, Mahdi Saedshoar On numerical methods for solving Riesz space fractional advection-dispersion equations based on spline interpolants. (English) Zbl 07601607 Comput. Appl. Math. 41, No. 7, Paper No. 314, 31 p. (2022). MSC: 35R11 65L20 65N06 65N22 PDF BibTeX XML Cite \textit{I. L. Saeed} et al., Comput. Appl. Math. 41, No. 7, Paper No. 314, 31 p. (2022; Zbl 07601607) Full Text: DOI OpenURL
Khuddush, Mahammad; Rajendra Prasad, K.; Veeraiah, P. Infinitely many positive solutions for an iterative system of fractional BVPs with multistrip Riemann-Stieltjes integral boundary conditions. (English) Zbl 07600711 Afr. Mat. 33, No. 4, Paper No. 91, 17 p. (2022). MSC: 26A33 34A08 34B16 PDF BibTeX XML Cite \textit{M. Khuddush} et al., Afr. Mat. 33, No. 4, Paper No. 91, 17 p. (2022; Zbl 07600711) Full Text: DOI OpenURL
El-Nabulsi, Rami Ahmad; Anukool, Waranont Nonlocal fractal neutrons transport equation and its implications in nuclear engineering. (English) Zbl 07599733 Acta Mech. 233, No. 10, 4083-4100 (2022). MSC: 26Axx 28Axx 74Axx PDF BibTeX XML Cite \textit{R. A. El-Nabulsi} and \textit{W. Anukool}, Acta Mech. 233, No. 10, 4083--4100 (2022; Zbl 07599733) Full Text: DOI OpenURL
El-Sapa, Shreen; Lotfy, Kh.; El-Bary, A. Laser short-pulse impact on magneto-photo-thermo-diffusion waves in excited semiconductor medium with fractional heat equation. (English) Zbl 1500.74013 Acta Mech. 233, No. 10, 3893-3907 (2022). MSC: 74F05 74J99 74F15 82D37 PDF BibTeX XML Cite \textit{S. El-Sapa} et al., Acta Mech. 233, No. 10, 3893--3907 (2022; Zbl 1500.74013) Full Text: DOI OpenURL
Sun, Liangliang; Chang, Maoli On the reconstruction of convection coefficient in a semilinear anomalous diffusion system. (English) Zbl 1498.35628 Taiwanese J. Math. 26, No. 5, 927-951 (2022). MSC: 35R30 35R11 35R25 35K20 65M30 65M32 PDF BibTeX XML Cite \textit{L. Sun} and \textit{M. Chang}, Taiwanese J. Math. 26, No. 5, 927--951 (2022; Zbl 1498.35628) Full Text: DOI OpenURL
Kashuri, Artion; Rassias, Themistocles M.; Liko, Rozana Some new fractional inequalities using \(n\)-polynomials \(s\)-type convexity. (English) Zbl 1496.26033 Daras, Nicholas J. (ed.) et al., Approximation and computation in science and engineering. Cham: Springer. Springer Optim. Appl. 180, 457-476 (2022). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{A. Kashuri} et al., Springer Optim. Appl. 180, 457--476 (2022; Zbl 1496.26033) Full Text: DOI OpenURL
Basua, Debananda; Jonnalagadda, Jagan Mohan Lyapunov-type inequalities for fractional differential operators with non-singular kernels. (English) Zbl 07597681 Giri, Debasis (ed.) et al., Proceedings of the seventh international conference on mathematics and computing, ICMC 2021, Shibpur, India, March 2–5, 2021. Singapore: Springer. Adv. Intell. Syst. Comput. 1412, 789-800 (2022). Reviewer: Lingju Kong (Chattanooga) MSC: 34B27 34A08 34B15 PDF BibTeX XML Cite \textit{D. Basua} and \textit{J. M. Jonnalagadda}, Adv. Intell. Syst. Comput. 1412, 789--800 (2022; Zbl 07597681) Full Text: DOI OpenURL
Santra, Sudarshan; Panda, Abhilipsa; Mohapatra, Jugal A novel approach for solving multi-term time fractional Volterra-Fredholm partial integro-differential equations. (English) Zbl 07597412 J. Appl. Math. Comput. 68, No. 5, 3545-3563 (2022). MSC: 26A33 35R09 65R20 PDF BibTeX XML Cite \textit{S. Santra} et al., J. Appl. Math. Comput. 68, No. 5, 3545--3563 (2022; Zbl 07597412) Full Text: DOI OpenURL