Ince, Nihal A generalized entropy optimization modelling in the theory of stochastic differential equations. (English) Zbl 07553092 J. Korean Stat. Soc. 51, No. 2, 337-355 (2022). MSC: 62-XX PDF BibTeX XML Cite \textit{N. Ince}, J. Korean Stat. Soc. 51, No. 2, 337--355 (2022; Zbl 07553092) Full Text: DOI
Tocino, A.; Zeghdane, R.; Senosiaín, M. J. On the MS-stability of predictor-corrector schemes for stochastic differential equations. (English) Zbl 07318197 Math. Comput. Simul. 180, 289-305 (2021). MSC: 60Hxx PDF BibTeX XML Cite \textit{A. Tocino} et al., Math. Comput. Simul. 180, 289--305 (2021; Zbl 07318197) Full Text: DOI
İnce, Nihal; Shamilov, Aladdin An application of new method to obtain probability density function of solution of stochastic differential equations. (English) Zbl 1506.65021 Appl. Math. Nonlinear Sci. 5, No. 1, 337-348 (2020). MSC: 65C30 60H10 94A17 PDF BibTeX XML Cite \textit{N. İnce} and \textit{A. Shamilov}, Appl. Math. Nonlinear Sci. 5, No. 1, 337--348 (2020; Zbl 1506.65021) Full Text: DOI
Saha, Bapi Chance of extinction of populations in food chain model under demographic stochasticity. (English) Zbl 1497.92211 Math. Biosci. Eng. 16, No. 5, 3537-3560 (2019). MSC: 92D25 92D40 PDF BibTeX XML Cite \textit{B. Saha}, Math. Biosci. Eng. 16, No. 5, 3537--3560 (2019; Zbl 1497.92211) Full Text: DOI
Wang, Chengqiang A class of impulsive stochastic parabolic functional differential equations and their asymptotics. (English) Zbl 1369.60042 Acta Appl. Math. 146, No. 1, 163-186 (2016). Reviewer: Xue-Mei Li (Warwick) MSC: 60H15 PDF BibTeX XML Cite \textit{C. Wang}, Acta Appl. Math. 146, No. 1, 163--186 (2016; Zbl 1369.60042) Full Text: DOI
Schurz, Henri; Tosun, Kursad Stochastic asymptotic stability of SIR model with variable diffusion rates. (English) Zbl 1312.60077 J. Dyn. Differ. Equations 27, No. 1, 69-82 (2015). MSC: 60H10 60H30 92D30 93E15 PDF BibTeX XML Cite \textit{H. Schurz} and \textit{K. Tosun}, J. Dyn. Differ. Equations 27, No. 1, 69--82 (2015; Zbl 1312.60077) Full Text: DOI
Gómez-Corral, A.; López García, M. Extinction times and size of the surviving species in a two-species competition process. (English) Zbl 1284.92085 J. Math. Biol. 64, No. 1-2, 255-289 (2012). MSC: 92D25 60J28 PDF BibTeX XML Cite \textit{A. Gómez-Corral} and \textit{M. López García}, J. Math. Biol. 64, No. 1--2, 255--289 (2012; Zbl 1284.92085) Full Text: DOI
Yuan, Yuan; Allen, Linda J. S. Stochastic models for virus and immune system dynamics. (English) Zbl 1244.92043 Math. Biosci. 234, No. 2, 84-94 (2011). MSC: 92C60 34A99 60H10 65C20 60H30 PDF BibTeX XML Cite \textit{Y. Yuan} and \textit{L. J. S. Allen}, Math. Biosci. 234, No. 2, 84--94 (2011; Zbl 1244.92043) Full Text: DOI Link
Štěpán, Josef; Hlubinka, Daniel Kermack-McKendrick epidemic model revisited. (English) Zbl 1137.37338 Kybernetika 43, No. 4, 395-414 (2007). MSC: 37N25 60H10 60H35 92D25 37H10 PDF BibTeX XML Cite \textit{J. Štěpán} and \textit{D. Hlubinka}, Kybernetika 43, No. 4, 395--414 (2007; Zbl 1137.37338) Full Text: EuDML Link
Allen, Linda J. S.; McCormack, Robert K.; Jonsson, Colleen B. Mathematical models for hantavirus infection in rodents. (English) Zbl 1334.92387 Bull. Math. Biol. 68, No. 3, 511-524 (2006). MSC: 92D30 PDF BibTeX XML Cite \textit{L. J. S. Allen} et al., Bull. Math. Biol. 68, No. 3, 511--524 (2006; Zbl 1334.92387) Full Text: DOI Link
McCormack, Robert K.; Allen, Linda J. S. Disease emergence in deterministic and stochastic models for host and pathogen. (English) Zbl 1073.92047 Appl. Math. Comput. 168, No. 2, 1281-1305 (2005). MSC: 92D30 60H10 PDF BibTeX XML Cite \textit{R. K. McCormack} and \textit{L. J. S. Allen}, Appl. Math. Comput. 168, No. 2, 1281--1305 (2005; Zbl 1073.92047) Full Text: DOI
Allen, Linda J. S.; Allen, Edward J. A comparison of three different stochastic population models with regard to persistence time. (English) Zbl 1105.92023 Theor. Popul. Biol. 64, No. 4, 439-449 (2003). MSC: 92D25 60J20 60J85 PDF BibTeX XML Cite \textit{L. J. S. Allen} and \textit{E. J. Allen}, Theor. Popul. Biol. 64, No. 4, 439--449 (2003; Zbl 1105.92023) Full Text: DOI
Allen, E. J.; Baglama, J.; Boyd, S. K. Numerical approximation of the product of the square root of a matrix with a vector. (English) Zbl 0972.65029 Linear Algebra Appl. 310, No. 1-3, 167-181 (2000). Reviewer: Juan Pedro Milaszewicz (Buenos Aires) MSC: 65F30 15A24 65F10 PDF BibTeX XML Cite \textit{E. J. Allen} et al., Linear Algebra Appl. 310, No. 1--3, 167--181 (2000; Zbl 0972.65029) Full Text: DOI