zbMATH — the first resource for mathematics

Several sufficient conditions for a map and a semi-flow to be ergodically sensitive. (English) Zbl 1387.37005
Summary: In this paper, we are concerned solely with the ergodic sensitivity for maps (resp. semi-flows), where these maps and semi-flows may not be continuous (in topology). A few new sufficient conditions under which a map (resp. a semi-flow) on a metric space is ergodically sensitive are presented, where such maps and semi-flows may not be continuous (in topology). In particular, we prove that the topologically strong ergodicity of a measure-preserving map (resp. a measure-preserving semi-flow) on a metric probability space with a fully supported measure implies its ergodical sensitivity.

37A05 Dynamical aspects of measure-preserving transformations
37A25 Ergodicity, mixing, rates of mixing
54H20 Topological dynamics (MSC2010)
28D05 Measure-preserving transformations
Full Text: DOI
[1] Abraham, C.; Biau, G.; Cadre, B., chaotic properties of mapping on a probability space, J. Math. Anal. Appl., 266, 420-431, (2002) · Zbl 1097.37034
[2] Dastjerdi, D. Ahmadi; Hosseini, M., sub-shadowings, Nonlinear Anal., 72, 3759-3766, (2010) · Zbl 1197.54046
[3] Bank, J.; Brooks, J.; Cairns, G.; Davis, G.; Stacey, D., on Devaney’s definition of chaos, Amer. Math. Monthly, 99, 332-334, (1992) · Zbl 0758.58019
[4] Glasner, E.; Weiss, B., sensitive dependence on initial conditions, Nonlinearity, 6, 1067-1075, (1993) · Zbl 0790.58025
[5] Gu, R., the large deviations theorem and ergodicity, Chaos Solitons Fractals, 34, 1387-1392, (2007) · Zbl 1152.37304
[6] Hasselblatt, B.; Katok, A., A First Course in Dynamics, (2003), Cambridge University Press, New York · Zbl 1027.37001
[7] He, L.; Yan, X.; Wang, L., weak-mixing implies sensitive dependence, J. Math. Anal. Appl., 299, 300-304, (2004) · Zbl 1057.28008
[8] Kato, H., everywhere chaotic homeomorphisms on manifolds and k −dimensional merger manifolds, Topology Appl., 72, 1-17, (1996) · Zbl 0859.54031
[9] Lardjane, S., on some stochastic properties in Devaney’s chaos, Chaos Solitons Fractals, 28, 668-672, (2006) · Zbl 1106.37006
[10] Li, R., A note on stronger forms of sensitivity for dynamical systems, Chaos Solitons Fractals, 45, 753-758, (2012) · Zbl 1263.37022
[11] Li, R., the large deviations theorem and ergodic sensitivity, Commun. Nonlinear Sci. Numer. Simul., 18, 819-825, (2013) · Zbl 1258.37021
[12] Li, R., A note on shadowing with chain transitivity, Commun. Nonlinear Sci. Numer. Simul., 17, 2815-2823, (2012) · Zbl 1252.37007
[13] Li, R.; Shi, Y., several sufficient conditions for sensitive dependence on initial conditions, Nonlinear Anal., 72, 2716-2720, (2010) · Zbl 1180.37005
[14] Nemiskii, V.V.; Stepanov, V.V., Qualitative Theory of Ordinary Differential Equations, (1960), Princeton Univ. Press, Princeton, NJ
[15] Niu, Y., the average-shadowing property and strong ergodicity, J. Math. Anal. Appl., 376, 528-534, (2011) · Zbl 1210.37016
[16] Niu, Y., the large deviations theorem and sensitivity, Chaos Solitons Fractals, 42, 609-614, (2009) · Zbl 1198.37013
[17] Niu, Y.; Su, S., on strong ergodicity and chaoticity of systems with the asymptotic average shadowing property, Chaos Solitons Fractals, 44, 429-432, (2011) · Zbl 1225.37031
[18] Niu, Y.; Su, S.; Zhou, and B., strong sensitivity of systems satisfying the large deviations theorem, Int. J. Gen. Syst., 44, 98-105, (2015) · Zbl 1332.54203
[19] Niu, Y.; Wang, Y.; Su, S., the asymptotic average shadowing property and strong ergodicity, Chaos Solitons Fractals, 53, 34-38, (2013) · Zbl 1339.37003
[20] Peterson, K., Ergodic Theory, (1983), Cambridge University Press, New York
[21] Walters, P., An Introduction to Ergodic Theory, (1982), Springer-Verlag, New York · Zbl 0475.28009
[22] Wang, Y.; Niu, Y., strong ergodicity of systems with the average shadowing property, Dynam. Sys.-An Int. J., 29, 18-23, (2014) · Zbl 1291.37007
[23] Wang, H.; Xiong, J., some properties of topologically ergodic maps, Acta. Math. Sin., 47, 859-866, (2004) · Zbl 1116.37006
[24] Wu, X.; Chen, G., on the large deviations theorem and ergodicity, Commun. Nonlin. Sci. Numer. Simulat., 30, 243-247, (2016)
[25] Xiong, J.; Yang, Z., Chaos caused by a topologically mixing maps, in Dynamical Systems and Related Topics, (1992), World Scientific Press, Singapore
[26] Yang, R., topologically ergodic maps, Acta. Math. Sinica, 44, 1063-1068, (2001) · Zbl 1012.37007
[27] Yang, R., topological ergodicity and topological double ergodicity, Acta. Math. Sinica, 46, 555-560, (2003) · Zbl 1047.54023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.