Cheng, Wanyou; Dai, Yu-Hong An active set Newton-CG method for \(\ell_1\) optimization. (English) Zbl 07328400 Appl. Comput. Harmon. Anal. 50, 303-325 (2021). MSC: 90C06 90C25 65Y20 94A08 PDF BibTeX XML Cite \textit{W. Cheng} and \textit{Y.-H. Dai}, Appl. Comput. Harmon. Anal. 50, 303--325 (2021; Zbl 07328400) Full Text: DOI
Guo, Lei; Chen, Xiaojun Mathematical programs with complementarity constraints and a non-Lipschitz objective: optimality and approximation. (English) Zbl 07300746 Math. Program. 185, No. 1-2 (A), 455-485 (2021). MSC: 90C26 90C33 90C59 PDF BibTeX XML Cite \textit{L. Guo} and \textit{X. Chen}, Math. Program. 185, No. 1--2 (A), 455--485 (2021; Zbl 07300746) Full Text: DOI
Liu, Tianxiang; Markovsky, Ivan; Pong, Ting Kei; Takeda, Akiko A hybrid penalty method for a class of optimization problems with multiple rank constraints. (English) Zbl 07301586 SIAM J. Matrix Anal. Appl. 41, No. 3, 1260-1283 (2020). MSC: 65 49 90C30 PDF BibTeX XML Cite \textit{T. Liu} et al., SIAM J. Matrix Anal. Appl. 41, No. 3, 1260--1283 (2020; Zbl 07301586) Full Text: DOI
Hong, Mingyi; Chang, Tsung-Hui; Wang, Xiangfeng; Razaviyayn, Meisam; Ma, Shiqian; Luo, Zhi-Quan A block successive upper-bound minimization method of multipliers for linearly constrained convex optimization. (English) Zbl 07291297 Math. Oper. Res. 45, No. 3, 833-861 (2020). MSC: 90C25 PDF BibTeX XML Cite \textit{M. Hong} et al., Math. Oper. Res. 45, No. 3, 833--861 (2020; Zbl 07291297) Full Text: DOI
Ding, Liang; Han, Weimin A projected gradient method for \(\alpha\ell_1-\beta\ell_2\) sparsity regularization. (English) Zbl 07283094 Inverse Probl. 36, No. 12, Article ID 125012, 30 p. (2020). MSC: 65K05 90C26 PDF BibTeX XML Cite \textit{L. Ding} and \textit{W. Han}, Inverse Probl. 36, No. 12, Article ID 125012, 30 p. (2020; Zbl 07283094) Full Text: DOI
Blondel, Mathieu; Martins, André F. T.; Niculae, Vlad Learning with Fenchel-Young losses. (English) Zbl 07255066 J. Mach. Learn. Res. 21, Paper No. 35, 69 p. (2020). MSC: 68T05 PDF BibTeX XML Cite \textit{M. Blondel} et al., J. Mach. Learn. Res. 21, Paper No. 35, 69 p. (2020; Zbl 07255066) Full Text: Link
Zhang, Yangjing; Zhang, Ning; Sun, Defeng; Toh, Kim-Chuan A proximal point dual Newton algorithm for solving group graphical Lasso problems. (English) Zbl 1448.90096 SIAM J. Optim. 30, No. 3, 2197-2220 (2020). MSC: 90C35 62J10 PDF BibTeX XML Cite \textit{Y. Zhang} et al., SIAM J. Optim. 30, No. 3, 2197--2220 (2020; Zbl 1448.90096) Full Text: DOI
Diop, El Hadji S.; Boudraa, Abdel-Ouahab; Prasath, V. B. Surya Optimal nonlinear signal approximations based on piecewise constant functions. (English) Zbl 07235637 Circuits Syst. Signal Process. 39, No. 5, 2673-2694 (2020). MSC: 94A12 42C40 68W25 PDF BibTeX XML Cite \textit{E. H. S. Diop} et al., Circuits Syst. Signal Process. 39, No. 5, 2673--2694 (2020; Zbl 07235637) Full Text: DOI
Ye, Minglu; Pong, Ting Kei A subgradient-based approach for finding the maximum feasible subsystem with respect to a set. (English) Zbl 07202485 SIAM J. Optim. 30, No. 2, 1274-1299 (2020). MSC: 90C06 90C26 90C30 90C90 PDF BibTeX XML Cite \textit{M. Ye} and \textit{T. K. Pong}, SIAM J. Optim. 30, No. 2, 1274--1299 (2020; Zbl 07202485) Full Text: DOI
Le Gia, Quoc Thong; Sloan, Ian H.; Womersley, Robert S.; Wang, Yu Guang Isotropic sparse regularization for spherical harmonic representations of random fields on the sphere. (English) Zbl 07193978 Appl. Comput. Harmon. Anal. 49, No. 1, 257-278 (2020). MSC: 60G60 85A35 62M40 PDF BibTeX XML Cite \textit{Q. T. Le Gia} et al., Appl. Comput. Harmon. Anal. 49, No. 1, 257--278 (2020; Zbl 07193978) Full Text: DOI
Lee, Ching-pei; Wright, Stephen J. Inexact variable metric stochastic block-coordinate descent for regularized optimization. (English) Zbl 1441.90158 J. Optim. Theory Appl. 185, No. 1, 151-187 (2020). MSC: 90C30 90C06 PDF BibTeX XML Cite \textit{C.-p. Lee} and \textit{S. J. Wright}, J. Optim. Theory Appl. 185, No. 1, 151--187 (2020; Zbl 1441.90158) Full Text: DOI
Cheng, Wanyou; Chen, Zixin; Hu, Qingjie An active set Barzilar-Borwein algorithm for \(l_0\) regularized optimization. (English) Zbl 1451.90097 J. Glob. Optim. 76, No. 4, 769-791 (2020). Reviewer: Giorgio Gnecco (Lucca) MSC: 90C06 90C25 65Y20 94A08 PDF BibTeX XML Cite \textit{W. Cheng} et al., J. Glob. Optim. 76, No. 4, 769--791 (2020; Zbl 1451.90097) Full Text: DOI
Xiang, Xueshuang; Sun, Hongpeng Sparse reconstructions of acoustic source for inverse scattering problems in measure space. (English) Zbl 1435.35420 Inverse Probl. 36, No. 3, Article ID 035004, 25 p. (2020). MSC: 35R30 78A46 35B65 PDF BibTeX XML Cite \textit{X. Xiang} and \textit{H. Sun}, Inverse Probl. 36, No. 3, Article ID 035004, 25 p. (2020; Zbl 1435.35420) Full Text: DOI
Wu, Lei A residual-based algorithm for solving a class of structured nonsmooth optimization problems. (English) Zbl 1440.90055 J. Glob. Optim. 76, No. 1, 137-153 (2020). MSC: 90C26 90C06 90C30 49M05 PDF BibTeX XML Cite \textit{L. Wu}, J. Glob. Optim. 76, No. 1, 137--153 (2020; Zbl 1440.90055) Full Text: DOI
Wang, Guoqiang; Wei, Xinyuan; Yu, Bo; Xu, Lijun An efficient proximal block coordinate homotopy method for large-scale sparse least squares problems. (English) Zbl 1434.90091 SIAM J. Sci. Comput. 42, No. 1, A395-A423 (2020). MSC: 90C06 90C26 PDF BibTeX XML Cite \textit{G. Wang} et al., SIAM J. Sci. Comput. 42, No. 1, A395--A423 (2020; Zbl 1434.90091) Full Text: DOI
Xie, Siyu; Guo, Lei Analysis of compressed distributed adaptive filters. (English) Zbl 1434.94034 Automatica 112, Article ID 108707, 10 p. (2020). MSC: 94A12 93A14 93E11 PDF BibTeX XML Cite \textit{S. Xie} and \textit{L. Guo}, Automatica 112, Article ID 108707, 10 p. (2020; Zbl 1434.94034) Full Text: DOI
Li, Xudong; Sun, Defeng; Toh, Kim-Chuan On the efficient computation of a generalized Jacobian of the projector over the Birkhoff polytope. (English) Zbl 1434.90116 Math. Program. 179, No. 1-2 (A), 419-446 (2020). MSC: 90C20 49J52 49M15 65F10 90C06 90C25 PDF BibTeX XML Cite \textit{X. Li} et al., Math. Program. 179, No. 1--2 (A), 419--446 (2020; Zbl 1434.90116) Full Text: DOI arXiv
Wang, Yuepeng; Hu, Kun; Ren, Lanlan; Lin, Guang Optimal observations-based retrieval of topography in 2D shallow water equations using PC-EnKF. (English) Zbl 1451.62165 J. Comput. Phys. 382, 43-60 (2019). MSC: 62P35 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Comput. Phys. 382, 43--60 (2019; Zbl 1451.62165) Full Text: DOI
Zhang, Rui; Feng, Xiangchu; Yang, Lixia; Chang, Lihong; Zhu, Xiaolong A global sparse gradient based coupled system for image denoising. (English) Zbl 1443.65026 Comput. Math. Appl. 78, No. 11, 3692-3711 (2019). MSC: 65D18 94A08 PDF BibTeX XML Cite \textit{R. Zhang} et al., Comput. Math. Appl. 78, No. 11, 3692--3711 (2019; Zbl 1443.65026) Full Text: DOI
Koep, Niklas; Behboodi, Arash; Mathar, Rudolf An introduction to compressed sensing. (English) Zbl 1453.94028 Boche, Holger (ed.) et al., Compressed sensing and its applications. Selected papers of the third international MATHEON conference, TU Berlin, Berlin, Germany, December 4–8, 2017. Cham: Birkhäuser. Appl. Numer. Harmon. Anal., 1-65 (2019). Reviewer: Agnieszka Lisowska (Sosnowiec) MSC: 94A12 PDF BibTeX XML Cite \textit{N. Koep} et al., in: Compressed sensing and its applications. Selected papers of the third international MATHEON conference, TU Berlin, Berlin, Germany, December 4--8, 2017. Cham: Birkhäuser. 1--65 (2019; Zbl 1453.94028) Full Text: DOI
Figueiredo, Mário A. T. On the use of ADMM for imaging inverse problems: the pros and cons of matrix inversions. (English) Zbl 07215882 Hintermüller, Michael (ed.) et al., Topics in applied analysis and optimisation. Partial differential equations, stochastic and numerical analysis. Selected papers from the Joint CIM-WIAS workshop, TAAO’17, Lisbon, Portugal, December 6–8, 2017. Cham: Springer (ISBN 978-3-030-33115-3/hbk; 978-3-030-33116-0/ebook). CIM Series in Mathematical Sciences, 159-181 (2019). MSC: 65K 94A 90C PDF BibTeX XML Cite \textit{M. A. T. Figueiredo}, in: Topics in applied analysis and optimisation. Partial differential equations, stochastic and numerical analysis. Selected papers from the Joint CIM-WIAS workshop, TAAO'17, Lisbon, Portugal, December 6--8, 2017. Cham: Springer. 159--181 (2019; Zbl 07215882) Full Text: DOI
Wu, Caiying; Zhan, Jiaming; Lu, Yue; Chen, Jein-Shan Signal reconstruction by conjugate gradient algorithm based on smoothing \(l_1\)-norm. (English) Zbl 1434.90199 Calcolo 56, No. 4, Paper No. 42, 26 p. (2019). MSC: 90C30 94A12 65K05 90C52 PDF BibTeX XML Cite \textit{C. Wu} et al., Calcolo 56, No. 4, Paper No. 42, 26 p. (2019; Zbl 1434.90199) Full Text: DOI
Milzarek, Andre; Xiao, Xiantao; Cen, Shicong; Wen, Zaiwen; Ulbrich, Michael A stochastic semismooth Newton method for nonsmooth nonconvex optimization. (English) Zbl 1434.90108 SIAM J. Optim. 29, No. 4, 2916-2948 (2019). MSC: 90C15 90C26 62-08 65K05 PDF BibTeX XML Cite \textit{A. Milzarek} et al., SIAM J. Optim. 29, No. 4, 2916--2948 (2019; Zbl 1434.90108) Full Text: DOI arXiv
Lu, Zhaosong; Zhou, Zirui Nonmonotone enhanced proximal DC algorithms for a class of structured nonsmooth DC programming. (English) Zbl 1430.90471 SIAM J. Optim. 29, No. 4, 2725-2752 (2019). MSC: 90C26 90C30 65K05 PDF BibTeX XML Cite \textit{Z. Lu} and \textit{Z. Zhou}, SIAM J. Optim. 29, No. 4, 2725--2752 (2019; Zbl 1430.90471) Full Text: DOI
Chung, Julianne; Gazzola, Silvia Flexible Krylov methods for \(\ell_p\) regularization. (English) Zbl 1436.65043 SIAM J. Sci. Comput. 41, No. 5, S149-S171 (2019). MSC: 65F20 65F22 65F35 PDF BibTeX XML Cite \textit{J. Chung} and \textit{S. Gazzola}, SIAM J. Sci. Comput. 41, No. 5, S149--S171 (2019; Zbl 1436.65043) Full Text: DOI arXiv
Azmi, Behzad; Kunisch, Karl A hybrid finite-dimensional RHC for stabilization of time-varying parabolic equations. (English) Zbl 1427.49024 SIAM J. Control Optim. 57, No. 5, 3496-3526 (2019). MSC: 49K20 49J20 93C20 93B52 93D20 49K40 PDF BibTeX XML Cite \textit{B. Azmi} and \textit{K. Kunisch}, SIAM J. Control Optim. 57, No. 5, 3496--3526 (2019; Zbl 1427.49024) Full Text: DOI arXiv
Cheng, Wanyou; Hu, Qingjie; Li, Donghui A fast conjugate gradient algorithm with active set prediction for \(\ell_1\) optimization. (English) Zbl 07122680 Optim. Methods Softw. 34, No. 6, 1277-1305 (2019). MSC: 65 90 49 PDF BibTeX XML Cite \textit{W. Cheng} et al., Optim. Methods Softw. 34, No. 6, 1277--1305 (2019; Zbl 07122680) Full Text: DOI
Becker, Stephen; Fadili, Jalal; Ochs, Peter On quasi-Newton forward-backward splitting: proximal calculus and convergence. (English) Zbl 07116302 SIAM J. Optim. 29, No. 4, 2445-2481 (2019). MSC: 65K05 65K10 90C25 90C31 PDF BibTeX XML Cite \textit{S. Becker} et al., SIAM J. Optim. 29, No. 4, 2445--2481 (2019; Zbl 07116302) Full Text: DOI arXiv
Dai, Yu-Hong; Huang, Yakui; Liu, Xin-Wei A family of spectral gradient methods for optimization. (English) Zbl 1427.90260 Comput. Optim. Appl. 74, No. 1, 43-65 (2019). MSC: 90C30 90C57 PDF BibTeX XML Cite \textit{Y.-H. Dai} et al., Comput. Optim. Appl. 74, No. 1, 43--65 (2019; Zbl 1427.90260) Full Text: DOI
Liu, Zexian; Liu, Hongwei; Wang, Xiping Accelerated augmented Lagrangian method for total variation minimization. (English) Zbl 1438.90259 Comput. Appl. Math. 38, No. 2, Paper No. 50, 15 p. (2019). MSC: 90C25 90C06 65F22 PDF BibTeX XML Cite \textit{Z. Liu} et al., Comput. Appl. Math. 38, No. 2, Paper No. 50, 15 p. (2019; Zbl 1438.90259) Full Text: DOI
Lin, Meixia; Liu, Yong-Jin; Sun, Defeng; Toh, Kim-Chuan Efficient sparse semismooth Newton methods for the clustered Lasso problem. (English) Zbl 1427.90200 SIAM J. Optim. 29, No. 3, 2026-2052 (2019). MSC: 90C06 90C25 90C90 PDF BibTeX XML Cite \textit{M. Lin} et al., SIAM J. Optim. 29, No. 3, 2026--2052 (2019; Zbl 1427.90200) Full Text: DOI arXiv
Ahookhosh, Masoud Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity. (English) Zbl 1426.90196 Math. Methods Oper. Res. 89, No. 3, 319-353 (2019). MSC: 90C25 90C60 49M37 65K05 PDF BibTeX XML Cite \textit{M. Ahookhosh}, Math. Methods Oper. Res. 89, No. 3, 319--353 (2019; Zbl 1426.90196) Full Text: DOI
Liu, Tianxiang; Pong, Ting Kei; Takeda, Akiko A successive difference-of-convex approximation method for a class of nonconvex nonsmooth optimization problems. (English) Zbl 1415.90121 Math. Program. 176, No. 1-2 (B), 339-367 (2019). MSC: 90C30 65K05 90C26 PDF BibTeX XML Cite \textit{T. Liu} et al., Math. Program. 176, No. 1--2 (B), 339--367 (2019; Zbl 1415.90121) Full Text: DOI arXiv
Lu, Jian; Qiao, Ke; Li, Xiaorui; Lu, Zhaosong; Zou, Yuru \(\ell_0\)-minimization methods for image restoration problems based on wavelet frames. (English) Zbl 1448.94024 Inverse Probl. 35, No. 6, Article ID 064001, 25 p. (2019). MSC: 94A08 90C26 65K05 65T60 PDF BibTeX XML Cite \textit{J. Lu} et al., Inverse Probl. 35, No. 6, Article ID 064001, 25 p. (2019; Zbl 1448.94024) Full Text: DOI
Yu, Peiran; Pong, Ting Kei Iteratively reweighted \(\ell _1\) algorithms with extrapolation. (English) Zbl 1420.90071 Comput. Optim. Appl. 73, No. 2, 353-386 (2019). MSC: 90C30 PDF BibTeX XML Cite \textit{P. Yu} and \textit{T. K. Pong}, Comput. Optim. Appl. 73, No. 2, 353--386 (2019; Zbl 1420.90071) Full Text: DOI arXiv
Lee, Ching-pei; Wright, Stephen J. Inexact successive quadratic approximation for regularized optimization. (English) Zbl 1420.90045 Comput. Optim. Appl. 72, No. 3, 641-674 (2019). MSC: 90C25 90C26 90C55 PDF BibTeX XML Cite \textit{C.-p. Lee} and \textit{S. J. Wright}, Comput. Optim. Appl. 72, No. 3, 641--674 (2019; Zbl 1420.90045) Full Text: DOI arXiv
Lopes, R.; Santos, S. A.; Silva, P. J. S. Accelerating block coordinate descent methods with identification strategies. (English) Zbl 1414.90327 Comput. Optim. Appl. 72, No. 3, 609-640 (2019). MSC: 90C30 60K05 49M37 90C06 90C25 PDF BibTeX XML Cite \textit{R. Lopes} et al., Comput. Optim. Appl. 72, No. 3, 609--640 (2019; Zbl 1414.90327) Full Text: DOI
Liu, Zexian; Liu, Hongwei An efficient gradient method with approximately optimal stepsize based on tensor model for unconstrained optimization. (English) Zbl 1420.90035 J. Optim. Theory Appl. 181, No. 2, 608-633 (2019). MSC: 90C06 90C52 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{H. Liu}, J. Optim. Theory Appl. 181, No. 2, 608--633 (2019; Zbl 1420.90035) Full Text: DOI
Aravkin, Aleksandr Y.; Burke, James V.; Drusvyatskiy, Dmitry; Friedlander, Michael P.; Roy, Scott Level-set methods for convex optimization. (English) Zbl 1421.90111 Math. Program. 174, No. 1-2 (B), 359-390 (2019). MSC: 90C25 65K10 49M29 90-08 PDF BibTeX XML Cite \textit{A. Y. Aravkin} et al., Math. Program. 174, No. 1--2 (B), 359--390 (2019; Zbl 1421.90111) Full Text: DOI
Yue, Man-Chung; Zhou, Zirui; So, Anthony Man-Cho A family of inexact SQA methods for non-smooth convex minimization with provable convergence guarantees based on the Luo-Tseng error bound property. (English) Zbl 1412.49061 Math. Program. 174, No. 1-2 (B), 327-358 (2019). MSC: 49M15 65K10 90C55 PDF BibTeX XML Cite \textit{M.-C. Yue} et al., Math. Program. 174, No. 1--2 (B), 327--358 (2019; Zbl 1412.49061) Full Text: DOI arXiv
Rahpeymaii, Farzad; Amini, Keyvan; Allahviranloo, Tofigh; Malkhalifeh, Mohsen Rostamy A new class of conjugate gradient methods for unconstrained smooth optimization and absolute value equations. (English) Zbl 1407.90311 Calcolo 56, No. 1, Paper No. 2, 28 p. (2019). MSC: 90C30 93E24 34A34 PDF BibTeX XML Cite \textit{F. Rahpeymaii} et al., Calcolo 56, No. 1, Paper No. 2, 28 p. (2019; Zbl 1407.90311) Full Text: DOI
Esmaeili, Hamid; Shabani, Shima; Kimiaei, Morteza A new generalized shrinkage conjugate gradient method for sparse recovery. (English) Zbl 07031620 Calcolo 56, No. 1, Paper No. 1, 38 p. (2019). MSC: 65K05 90C25 90C06 94A08 PDF BibTeX XML Cite \textit{H. Esmaeili} et al., Calcolo 56, No. 1, Paper No. 1, 38 p. (2019; Zbl 07031620) Full Text: DOI
Yuan, Jianjun An improved variational model for denoising magnetic resonance images. (English) Zbl 1442.92086 Comput. Math. Appl. 76, No. 9, 2212-2222 (2018). MSC: 92C55 94A08 PDF BibTeX XML Cite \textit{J. Yuan}, Comput. Math. Appl. 76, No. 9, 2212--2222 (2018; Zbl 1442.92086) Full Text: DOI
Yan, Bai; Zhao, Qi; Wang, Zhihai; Zhang, J. Andrew Adaptive decomposition-based evolutionary approach for multiobjective sparse reconstruction. (English) Zbl 1440.94019 Inf. Sci. 462, 141-159 (2018). MSC: 94A12 90C29 90C59 94A08 PDF BibTeX XML Cite \textit{B. Yan} et al., Inf. Sci. 462, 141--159 (2018; Zbl 1440.94019) Full Text: DOI
Lu, Zhaosong; Li, Xiaorui Sparse recovery via partial regularization: models, theory, and algorithms. (English) Zbl 07179912 Math. Oper. Res. 43, No. 4, 1290-1316 (2018). MSC: 65C60 90C26 65K05 90C30 PDF BibTeX XML Cite \textit{Z. Lu} and \textit{X. Li}, Math. Oper. Res. 43, No. 4, 1290--1316 (2018; Zbl 07179912) Full Text: DOI
Lu, Zhaosong; Chen, Xiaojun Generalized conjugate gradient methods for \(\ell_1\) regularized convex quadratic programming with finite convergence. (English) Zbl 1432.90101 Math. Oper. Res. 43, No. 1, 275-303 (2018). MSC: 90C20 65K05 65Y20 62-08 90C06 90C25 11-06 PDF BibTeX XML Cite \textit{Z. Lu} and \textit{X. Chen}, Math. Oper. Res. 43, No. 1, 275--303 (2018; Zbl 1432.90101) Full Text: DOI
Li, Zhibao; Yiu, Ka Fai Cedric; Dai, Yu-Hong On sparse beamformer design with reverberation. (English) Zbl 07166832 Appl. Math. Modelling 58, 98-110 (2018). MSC: 94 93 PDF BibTeX XML Cite \textit{Z. Li} et al., Appl. Math. Modelling 58, 98--110 (2018; Zbl 07166832) Full Text: DOI
Xiang, Jianhong; Yue, Huihui; Yin, Xiangjun; Ruan, Guoqing A reweighted symmetric smoothed function approximating \(L_0\)-norm regularized sparse reconstruction method. (English) Zbl 1423.94027 Symmetry 10, No. 11, Paper No. 583, 18 p. (2018). MSC: 94A12 PDF BibTeX XML Cite \textit{J. Xiang} et al., Symmetry 10, No. 11, Paper No. 583, 18 p. (2018; Zbl 1423.94027) Full Text: DOI
Chang, Qianshun; Che, Zengyan An adaptive algorithm for TV-based model of three norms \(L_q\) \((q = \frac{1}{2}, 1, 2)\) in image restoration. (English) Zbl 1427.94008 Appl. Math. Comput. 329, 251-265 (2018). MSC: 94A08 65D18 65K10 68U10 PDF BibTeX XML Cite \textit{Q. Chang} and \textit{Z. Che}, Appl. Math. Comput. 329, 251--265 (2018; Zbl 1427.94008) Full Text: DOI
Cheng, Wan-You; Li, Dong-Hui A preconditioned conjugate gradient method with active set strategy for \(\ell_1\)-regularized least squares. (English) Zbl 1424.90191 J. Oper. Res. Soc. China 6, No. 4, 571-585 (2018). MSC: 90C06 90C25 65Y20 94A08 90C20 PDF BibTeX XML Cite \textit{W.-Y. Cheng} and \textit{D.-H. Li}, J. Oper. Res. Soc. China 6, No. 4, 571--585 (2018; Zbl 1424.90191) Full Text: DOI
Zhou, Bo; Yang, Yu-Fei; Xie, Wei-Si A novel model and ADMM algorithm for MR image reconstruction. (English) Zbl 1427.94033 Math. Probl. Eng. 2018, Article ID 5490458, 9 p. (2018). MSC: 94A08 65K10 92C55 PDF BibTeX XML Cite \textit{B. Zhou} et al., Math. Probl. Eng. 2018, Article ID 5490458, 9 p. (2018; Zbl 1427.94033) Full Text: DOI
Barbero, Álvaro; Sra, Suvrit Modular proximal optimization for multidimensional total-variation regularization. (English) Zbl 1411.90314 J. Mach. Learn. Res. 19, Paper No. 56, 82 p. (2018). MSC: 90C30 PDF BibTeX XML Cite \textit{Á. Barbero} and \textit{S. Sra}, J. Mach. Learn. Res. 19, Paper No. 56, 82 p. (2018; Zbl 1411.90314) Full Text: Link arXiv
Bubba, T. A.; Labate, D.; Zanghirati, G.; Bonettini, S. Shearlet-based regularized reconstruction in region-of-interest computed tomography. (English) Zbl 1405.44003 Math. Model. Nat. Phenom. 13, No. 4, Paper No. 34, 19 p. (2018). MSC: 44A12 65R32 68U10 92C55 65K05 65T60 PDF BibTeX XML Cite \textit{T. A. Bubba} et al., Math. Model. Nat. Phenom. 13, No. 4, Paper No. 34, 19 p. (2018; Zbl 1405.44003) Full Text: DOI
Xu, Jason; Chi, Eric C.; Yang, Meng; Lange, Kenneth A majorization-minimization algorithm for split feasibility problems. (English) Zbl 1416.90048 Comput. Optim. Appl. 71, No. 3, 795-828 (2018). MSC: 90C30 PDF BibTeX XML Cite \textit{J. Xu} et al., Comput. Optim. Appl. 71, No. 3, 795--828 (2018; Zbl 1416.90048) Full Text: DOI
Yang, Lei; Pong, Ting Kei; Chen, Xiaojun A nonmonotone alternating updating method for a class of matrix factorization problems. (English) Zbl 1411.90283 SIAM J. Optim. 28, No. 4, 3402-3430 (2018). MSC: 90C26 90C30 90C90 65K05 PDF BibTeX XML Cite \textit{L. Yang} et al., SIAM J. Optim. 28, No. 4, 3402--3430 (2018; Zbl 1411.90283) Full Text: DOI arXiv
Schaeffer, Hayden; Tran, Giang; Ward, Rachel Extracting sparse high-dimensional dynamics from limited data. (English) Zbl 1405.62127 SIAM J. Appl. Math. 78, No. 6, 3279-3295 (2018). MSC: 62M99 60B20 65K10 65L09 94A12 PDF BibTeX XML Cite \textit{H. Schaeffer} et al., SIAM J. Appl. Math. 78, No. 6, 3279--3295 (2018; Zbl 1405.62127) Full Text: DOI arXiv
Karbasi, Amin; Salavati, Amir Hesam; Vetterli, Martin Learning neural connectivity from firing activity: efficient algorithms with provable guarantees on topology. (English) Zbl 1402.92021 J. Comput. Neurosci. 44, No. 2, 253-272 (2018). MSC: 92B20 92C20 PDF BibTeX XML Cite \textit{A. Karbasi} et al., J. Comput. Neurosci. 44, No. 2, 253--272 (2018; Zbl 1402.92021) Full Text: DOI
Chen, Xiaojun; Womersley, Robert S. Spherical designs and nonconvex minimization for recovery of sparse signals on the sphere. (English) Zbl 1401.90167 SIAM J. Imaging Sci. 11, No. 2, 1390-1415 (2018). MSC: 90C26 90C90 65D32 PDF BibTeX XML Cite \textit{X. Chen} and \textit{R. S. Womersley}, SIAM J. Imaging Sci. 11, No. 2, 1390--1415 (2018; Zbl 1401.90167) Full Text: DOI
Wang, L. P.; Matveev, I. A.; Moroz, I. I. A truncation algorithm for minimizing the Frobenius-Schatten norm to find a sparse matrix. (English. Russian original) Zbl 1415.90094 J. Comput. Syst. Sci. Int. 57, No. 3, 434-442 (2018); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upravl. 2018, No. 3, 90-97 (2018). MSC: 90C26 65K05 PDF BibTeX XML Cite \textit{L. P. Wang} et al., J. Comput. Syst. Sci. Int. 57, No. 3, 434--442 (2018; Zbl 1415.90094); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upravl. 2018, No. 3, 90--97 (2018) Full Text: DOI
Shen, Jinglai; Mousavi, Seyedahmad Least sparsity of \(p\)-norm based optimization problems with \(p>1\). (English) Zbl 06951736 SIAM J. Optim. 28, No. 3, 2721-2751 (2018). Reviewer: Ernö Robert Csetnek (Wien) MSC: 65K05 90C25 90C30 PDF BibTeX XML Cite \textit{J. Shen} and \textit{S. Mousavi}, SIAM J. Optim. 28, No. 3, 2721--2751 (2018; Zbl 06951736) Full Text: DOI arXiv
Xiao, Xiantao; Li, Yongfeng; Wen, Zaiwen; Zhang, Liwei A regularized semi-smooth Newton method with projection steps for composite convex programs. (English) Zbl 1394.90534 J. Sci. Comput. 76, No. 1, 364-389 (2018). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{X. Xiao} et al., J. Sci. Comput. 76, No. 1, 364--389 (2018; Zbl 1394.90534) Full Text: DOI arXiv
Dong, Yun-Da; Zhang, Hai-Bin; Gao, Huan On globally Q-linear convergence of a splitting method for group Lasso. (English) Zbl 1413.90255 J. Oper. Res. Soc. China 6, No. 3, 445-454 (2018). MSC: 90C30 PDF BibTeX XML Cite \textit{Y.-D. Dong} et al., J. Oper. Res. Soc. China 6, No. 3, 445--454 (2018; Zbl 1413.90255) Full Text: DOI
Huan, Xun; Safta, Cosmin; Sargsyan, Khachik; Vane, Zachary P.; Lacaze, Guilhem; Oefelein, Joseph C.; Najm, Habib N. Compressive sensing with cross-validation and stop-sampling for sparse polynomial chaos expansions. (English) Zbl 1403.62133 SIAM/ASA J. Uncertain. Quantif. 6, 907-936 (2018). MSC: 62J05 62J07 94A12 PDF BibTeX XML Cite \textit{X. Huan} et al., SIAM/ASA J. Uncertain. Quantif. 6, 907--936 (2018; Zbl 1403.62133) Full Text: DOI arXiv
Xiu, Xianchao; Kong, Lingchen; Li, Yan; Qi, Houduo Iterative reweighted methods for \(\ell _1-\ell _p\) minimization. (English) Zbl 1401.90228 Comput. Optim. Appl. 70, No. 1, 201-219 (2018). MSC: 90C30 PDF BibTeX XML Cite \textit{X. Xiu} et al., Comput. Optim. Appl. 70, No. 1, 201--219 (2018; Zbl 1401.90228) Full Text: DOI
Bottou, Léon; Curtis, Frank E.; Nocedal, Jorge Optimization methods for large-scale machine learning. (English) Zbl 1397.65085 SIAM Rev. 60, No. 2, 223-311 (2018). Reviewer: Tiit Riismaa (Tallinn) MSC: 65K05 68Q25 68T05 90C06 90C30 49Q10 PDF BibTeX XML Cite \textit{L. Bottou} et al., SIAM Rev. 60, No. 2, 223--311 (2018; Zbl 1397.65085) Full Text: DOI arXiv
Chen, Tianyi; Curtis, Frank E.; Robinson, Daniel P. FarRSA for \(\ell_1\)-regularized convex optimization: local convergence and numerical experience. (English) Zbl 1390.49040 Optim. Methods Softw. 33, No. 2, 396-415 (2018). MSC: 49M37 49J52 62-07 65K05 90C25 90C30 PDF BibTeX XML Cite \textit{T. Chen} et al., Optim. Methods Softw. 33, No. 2, 396--415 (2018; Zbl 1390.49040) Full Text: DOI
Wen, Bo; Chen, Xiaojun; Pong, Ting Kei A proximal difference-of-convex algorithm with extrapolation. (English) Zbl 1401.90175 Comput. Optim. Appl. 69, No. 2, 297-324 (2018). MSC: 90C26 90C30 65K05 PDF BibTeX XML Cite \textit{B. Wen} et al., Comput. Optim. Appl. 69, No. 2, 297--324 (2018; Zbl 1401.90175) Full Text: DOI arXiv
Li, Xudong; Sun, Defeng; Toh, Kim-Chuan A highly efficient semismooth Newton augmented Lagrangian method for solving lasso problems. (English) Zbl 1392.65062 SIAM J. Optim. 28, No. 1, 433-458 (2018). MSC: 65F10 90C06 90C25 90C31 PDF BibTeX XML Cite \textit{X. Li} et al., SIAM J. Optim. 28, No. 1, 433--458 (2018; Zbl 1392.65062) Full Text: DOI arXiv
Malitsky, Yura; Pock, Thomas A first-order primal-dual algorithm with linesearch. (English) Zbl 1390.49033 SIAM J. Optim. 28, No. 1, 411-432 (2018). MSC: 49M29 65K10 65Y20 90C25 PDF BibTeX XML Cite \textit{Y. Malitsky} and \textit{T. Pock}, SIAM J. Optim. 28, No. 1, 411--432 (2018; Zbl 1390.49033) Full Text: DOI arXiv
Cheng, Wanyou; Dai, Yu-Hong Gradient-based method with active set strategy for \(\ell _1\) optimization. (English) Zbl 1392.90079 Math. Comput. 87, No. 311, 1283-1305 (2018). MSC: 90C06 90C25 65Y20 94A08 PDF BibTeX XML Cite \textit{W. Cheng} and \textit{Y.-H. Dai}, Math. Comput. 87, No. 311, 1283--1305 (2018; Zbl 1392.90079) Full Text: DOI
Li, Chong-Jun; Zhong, Yi-Jun A pseudo-heuristic parameter selection rule for \(l^1\)-regularized minimization problems. (English) Zbl 06824473 J. Comput. Appl. Math. 333, 1-19 (2018). MSC: 47A52 65F22 65F10 PDF BibTeX XML Cite \textit{C.-J. Li} and \textit{Y.-J. Zhong}, J. Comput. Appl. Math. 333, 1--19 (2018; Zbl 06824473) Full Text: DOI
Gong, Maoguo; Jiang, Xiangming; Li, Hao Optimization methods for regularization-based ill-posed problems: a survey and a multi-objective framework. (English) Zbl 1405.94024 Front. Comput. Sci. 11, No. 3, 362-391 (2017). MSC: 94A12 90C29 90C59 PDF BibTeX XML Cite \textit{M. Gong} et al., Front. Comput. Sci. 11, No. 3, 362--391 (2017; Zbl 1405.94024) Full Text: DOI
Monga, Vishal; Mousavi, Hojjat Seyed; Srinivas, Umamahesh Sparsity constrained estimation in image processing and computer vision. (English) Zbl 1443.94029 Monga, Vishal (ed.), Handbook of convex optimization methods in imaging science. Cham: Springer. 177-206 (2017). MSC: 94A08 68T09 62H35 PDF BibTeX XML Cite \textit{V. Monga} et al., in: Handbook of convex optimization methods in imaging science. Cham: Springer. 177--206 (2017; Zbl 1443.94029) Full Text: DOI
Brockmeier, Austin J.; Mu, Tingting; Ananiadou, Sophia; Goulermas, John Y. Quantifying the informativeness of similarity measurements. (English) Zbl 1440.62206 J. Mach. Learn. Res. 18(2017-2018), Paper No. 76, 61 p. (2017). MSC: 62H12 62H20 62B10 62P35 81P45 PDF BibTeX XML Cite \textit{A. J. Brockmeier} et al., J. Mach. Learn. Res. 18, Paper No. 76, 61 p. (2017; Zbl 1440.62206) Full Text: Link
Navabi, Shiva; Khaninezhad, Reza; Jafarpour, Behnam A unified formulation for generalized oilfield development optimization. (English) Zbl 1410.86017 Comput. Geosci. 21, No. 1, 47-74 (2017). MSC: 86A20 86-08 PDF BibTeX XML Cite \textit{S. Navabi} et al., Comput. Geosci. 21, No. 1, 47--74 (2017; Zbl 1410.86017) Full Text: DOI
Yang, Zhimin; Chai, Yi; Chen, Tao; Qu, Jianfeng Smoothed \(\ell_1\)-regularization-based line search for sparse signal recovery. (English) Zbl 1387.94049 Soft Comput. 21, No. 16, 4813-4828 (2017). MSC: 94A12 PDF BibTeX XML Cite \textit{Z. Yang} et al., Soft Comput. 21, No. 16, 4813--4828 (2017; Zbl 1387.94049) Full Text: DOI
Li, Ying-Yi; Zhang, Hai-Bin; Li, Fei A modified proximal gradient method for a family of nonsmooth convex optimization problems. (English) Zbl 1394.90461 J. Oper. Res. Soc. China 5, No. 3, 391-403 (2017). MSC: 90C25 90C30 PDF BibTeX XML Cite \textit{Y.-Y. Li} et al., J. Oper. Res. Soc. China 5, No. 3, 391--403 (2017; Zbl 1394.90461) Full Text: DOI
Li, Mingqiang; Han, Congying; Wang, Ruxin; Guo, Tiande Shrinking gradient descent algorithms for total variation regularized image denoising. (English) Zbl 1392.90107 Comput. Optim. Appl. 68, No. 3, 643-660 (2017). MSC: 90C30 90C52 PDF BibTeX XML Cite \textit{M. Li} et al., Comput. Optim. Appl. 68, No. 3, 643--660 (2017; Zbl 1392.90107) Full Text: DOI
Lu, Zhaosong; Zhang, Yong; Lu, Jian \(\ell _p\) regularized low-rank approximation via iterative reweighted singular value minimization. (English) Zbl 1388.90096 Comput. Optim. Appl. 68, No. 3, 619-642 (2017). MSC: 90C26 90C30 15A18 15A83 65K05 PDF BibTeX XML Cite \textit{Z. Lu} et al., Comput. Optim. Appl. 68, No. 3, 619--642 (2017; Zbl 1388.90096) Full Text: DOI
Lu, Zhaosong; Xiao, Lin A randomized nonmonotone block proximal gradient method for a class of structured nonlinear programming. (English) Zbl 1386.65157 SIAM J. Numer. Anal. 55, No. 6, 2930-2955 (2017). MSC: 65K05 90C06 90C30 PDF BibTeX XML Cite \textit{Z. Lu} and \textit{L. Xiao}, SIAM J. Numer. Anal. 55, No. 6, 2930--2955 (2017; Zbl 1386.65157) Full Text: DOI arXiv
Ahookhosh, Masoud; Neumaier, Arnold An optimal subgradient algorithm for large-scale bound-constrained convex optimization. (English) Zbl 1380.90215 Math. Methods Oper. Res. 86, No. 1, 123-147 (2017). MSC: 90C25 90C60 49M37 65K05 68Q25 PDF BibTeX XML Cite \textit{M. Ahookhosh} and \textit{A. Neumaier}, Math. Methods Oper. Res. 86, No. 1, 123--147 (2017; Zbl 1380.90215) Full Text: DOI arXiv
Bachmayr, Markus; Schneider, Reinhold Iterative methods based on soft thresholding of hierarchical tensors. (English) Zbl 1397.65243 Found. Comput. Math. 17, No. 4, 1037-1083 (2017). Reviewer: Adriano Festa (Rouen) MSC: 65N22 41A46 41A63 65D99 65F10 65N12 65N15 PDF BibTeX XML Cite \textit{M. Bachmayr} and \textit{R. Schneider}, Found. Comput. Math. 17, No. 4, 1037--1083 (2017; Zbl 1397.65243) Full Text: DOI arXiv
Lu, Zhaosong Randomized block proximal damped Newton method for composite self-concordant minimization. (English) Zbl 1375.49040 SIAM J. Optim. 27, No. 3, 1910-1942 (2017). MSC: 49M15 65K05 90C06 90C25 90C51 49J45 68T05 PDF BibTeX XML Cite \textit{Z. Lu}, SIAM J. Optim. 27, No. 3, 1910--1942 (2017; Zbl 1375.49040) Full Text: DOI arXiv
Chen, Tianyi; Curtis, Frank E.; Robinson, Daniel P. A reduced-space algorithm for minimizing \(\ell_1\)-regularized convex functions. (English) Zbl 1369.90103 SIAM J. Optim. 27, No. 3, 1583-1610 (2017). MSC: 90C06 90C25 90C30 90C55 90C90 49J52 49M37 62M20 65K05 PDF BibTeX XML Cite \textit{T. Chen} et al., SIAM J. Optim. 27, No. 3, 1583--1610 (2017; Zbl 1369.90103) Full Text: DOI arXiv
Liu, Tianxiang; Pong, Ting Kei Further properties of the forward-backward envelope with applications to difference-of-convex programming. (English) Zbl 1400.90279 Comput. Optim. Appl. 67, No. 3, 489-520 (2017). MSC: 90C30 PDF BibTeX XML Cite \textit{T. Liu} and \textit{T. K. Pong}, Comput. Optim. Appl. 67, No. 3, 489--520 (2017; Zbl 1400.90279) Full Text: DOI arXiv
Stella, Lorenzo; Themelis, Andreas; Patrinos, Panagiotis Forward-backward quasi-Newton methods for nonsmooth optimization problems. (English) Zbl 1401.90226 Comput. Optim. Appl. 67, No. 3, 443-487 (2017). MSC: 90C30 PDF BibTeX XML Cite \textit{L. Stella} et al., Comput. Optim. Appl. 67, No. 3, 443--487 (2017; Zbl 1401.90226) Full Text: DOI
Rao, Vishwas; Sandu, Adrian; Ng, Michael; Nino-Ruiz, Elias D. Robust data assimilation using \(L_1\) and Huber norms. (English) Zbl 1368.65018 SIAM J. Sci. Comput. 39, No. 3, B548-B570 (2017). MSC: 65C60 62F10 62-07 PDF BibTeX XML Cite \textit{V. Rao} et al., SIAM J. Sci. Comput. 39, No. 3, B548--B570 (2017; Zbl 1368.65018) Full Text: DOI
Karimi, Sahar; Vavasis, Stephen IMRO: A proximal quasi-Newton method for solving \(\ell_1\)-regularized least squares problems. (English) Zbl 1365.90202 SIAM J. Optim. 27, No. 2, 583-615 (2017). MSC: 90C25 90C30 90C53 90C90 65K05 49M37 49M15 PDF BibTeX XML Cite \textit{S. Karimi} and \textit{S. Vavasis}, SIAM J. Optim. 27, No. 2, 583--615 (2017; Zbl 1365.90202) Full Text: DOI
Prieto, Kernel; Dorn, Oliver Sparsity and level set regularization for diffuse optical tomography using a transport model in 2D. (English) Zbl 1361.65104 Inverse Probl. 33, No. 1, Article ID 014001, 28 p. (2017). MSC: 65R20 45K05 65R32 45Q05 92C55 PDF BibTeX XML Cite \textit{K. Prieto} and \textit{O. Dorn}, Inverse Probl. 33, No. 1, Article ID 014001, 28 p. (2017; Zbl 1361.65104) Full Text: DOI
Eghbali, Reza; Fazel, Maryam Decomposable norm minimization with proximal-gradient homotopy algorithm. (English) Zbl 1392.90105 Comput. Optim. Appl. 66, No. 2, 345-381 (2017). MSC: 90C30 PDF BibTeX XML Cite \textit{R. Eghbali} and \textit{M. Fazel}, Comput. Optim. Appl. 66, No. 2, 345--381 (2017; Zbl 1392.90105) Full Text: DOI arXiv
Zhang, Na; Li, Qia On optimal solutions of the constrained \({\ell}_{0}\) regularization and its penalty problem. (English) Zbl 1360.65183 Inverse Probl. 33, No. 2, Article ID 025010, 28 p. (2017). Reviewer: Hans Benker (Merseburg) MSC: 65K10 49J15 49M25 PDF BibTeX XML Cite \textit{N. Zhang} and \textit{Q. Li}, Inverse Probl. 33, No. 2, Article ID 025010, 28 p. (2017; Zbl 1360.65183) Full Text: DOI arXiv
Chen, Xiaojun; Guo, Lei; Lu, Zhaosong; Ye, Jane J. An augmented Lagrangian method for non-Lipschitz nonconvex programming. (English) Zbl 1421.90119 SIAM J. Numer. Anal. 55, No. 1, 168-193 (2017). Reviewer: Stephan Dempe (Freiberg) MSC: 90C26 90C30 90C59 PDF BibTeX XML Cite \textit{X. Chen} et al., SIAM J. Numer. Anal. 55, No. 1, 168--193 (2017; Zbl 1421.90119) Full Text: DOI
Souopgui, Innocent; Ngodock, Hans E.; Vidard, Arthur; Le Dimet, François-Xavier Incremental projection approach of regularization for inverse problems. (English) Zbl 1358.49023 Appl. Math. Optim. 74, No. 2, 303-324 (2016). MSC: 49K40 49M05 68U10 PDF BibTeX XML Cite \textit{I. Souopgui} et al., Appl. Math. Optim. 74, No. 2, 303--324 (2016; Zbl 1358.49023) Full Text: DOI
Chen, Dai-Qiang; Zhou, Yan; Song, Li-Juan Fixed point algorithm based on adapted metric method for convex minimization problem with application to image deblurring. (English) Zbl 1401.94014 Adv. Comput. Math. 42, No. 6, 1287-1310 (2016). MSC: 94A08 65K05 90C25 90C53 PDF BibTeX XML Cite \textit{D.-Q. Chen} et al., Adv. Comput. Math. 42, No. 6, 1287--1310 (2016; Zbl 1401.94014) Full Text: DOI
Huang, Yakui; Liu, Hongwei Smoothing projected Barzilai-Borwein method for constrained non-Lipschitz optimization. (English) Zbl 1357.90117 Comput. Optim. Appl. 65, No. 3, 671-698 (2016). MSC: 90C26 PDF BibTeX XML Cite \textit{Y. Huang} and \textit{H. Liu}, Comput. Optim. Appl. 65, No. 3, 671--698 (2016; Zbl 1357.90117) Full Text: DOI
Scheinberg, Katya; Tang, Xiaocheng Practical inexact proximal quasi-Newton method with global complexity analysis. (English) Zbl 1366.90166 Math. Program. 160, No. 1-2 (A), 495-529 (2016). MSC: 90C25 90C53 PDF BibTeX XML Cite \textit{K. Scheinberg} and \textit{X. Tang}, Math. Program. 160, No. 1--2 (A), 495--529 (2016; Zbl 1366.90166) Full Text: DOI arXiv
Cao, Jiuwen; Hao, Jiaoping; Lai, Xiaoping; Vong, Chi-Man; Luo, Minxia Ensemble extreme learning machine and sparse representation classification. (English) Zbl 1349.93304 J. Franklin Inst. 353, No. 17, 4526-4541 (2016). MSC: 93C95 94A08 68T05 62H30 PDF BibTeX XML Cite \textit{J. Cao} et al., J. Franklin Inst. 353, No. 17, 4526--4541 (2016; Zbl 1349.93304) Full Text: DOI
Hager, William W.; Zhang, Hongchao An active set algorithm for nonlinear optimization with polyhedral constraints. (English) Zbl 1349.90619 Sci. China, Math. 59, No. 8, 1525-1542 (2016). MSC: 90C06 90C26 65Y20 PDF BibTeX XML Cite \textit{W. W. Hager} and \textit{H. Zhang}, Sci. China, Math. 59, No. 8, 1525--1542 (2016; Zbl 1349.90619) Full Text: DOI arXiv
Treister, Eran; Turek, Javier S.; Yavneh, Irad A multilevel framework for sparse optimization with application to inverse covariance estimation and logistic regression. (English) Zbl 1348.90466 SIAM J. Sci. Comput. 38, No. 5, S566-S592 (2016). MSC: 90C06 90C25 90C22 PDF BibTeX XML Cite \textit{E. Treister} et al., SIAM J. Sci. Comput. 38, No. 5, S566--S592 (2016; Zbl 1348.90466) Full Text: DOI arXiv
Byrd, Richard H.; Chin, Gillian M.; Nocedal, Jorge; Oztoprak, Figen A family of second-order methods for convex \(\ell _1\)-regularized optimization. (English) Zbl 1350.49046 Math. Program. 159, No. 1-2 (A), 435-467 (2016). Reviewer: Guy Jumarie (Montréal) MSC: 49M37 49M15 90C25 90C30 65K05 PDF BibTeX XML Cite \textit{R. H. Byrd} et al., Math. Program. 159, No. 1--2 (A), 435--467 (2016; Zbl 1350.49046) Full Text: DOI