zbMATH — the first resource for mathematics

Warped phase coherence: an empirical synchronization measure combining phase and amplitude information. (English) Zbl 1409.34051
Summary: The entrainment between weakly coupled nonlinear oscillators, as well as between complex signals such as those representing physiological activity, is frequently assessed in terms of whether a stable relationship is detectable between the instantaneous phases extracted from the measured or simulated time-series via the analytic signal. Here, we demonstrate that adding a possibly complex constant value to this normally null-mean signal has a non-trivial warping effect. Among other consequences, this introduces a level of sensitivity to the amplitude fluctuations and average relative phase. By means of simulations of Rössler systems and experiments on single-transistor oscillator networks, it is shown that the resulting coherence measure may have an empirical value in improving the inference of the structural couplings from the dynamics. When tentatively applied to the electroencephalogram recorded while performing imaginary and real movements, this straightforward modification of the phase locking value substantially improved the classification accuracy. Hence, its possible practical relevance in brain-computer and brain-machine interfaces deserves consideration.
©2019 American Institute of Physics
34C60 Qualitative investigation and simulation of ordinary differential equation models
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
Full Text: DOI
[1] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76, 1804, (1996)
[2] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. L.; Zhou, C. S., The synchronization of chaotic systems, Phys. Rep., 366, 1, (2002) · Zbl 0995.37022
[3] Boccaletti, S.; Pisarchik, A. N.; del Genio, C. I.; Amann, A., Synchronization: From Coupled Systems to Complex Networks, (2018), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1380.90001
[4] Osipov, G. V.; Hu, B.; Zhou, Ch.; Ivanchenko, M. V.; Kurths, J., Three types of transition to phase synchronization in coupled chaotic oscillators, Phys. Rev. Lett., 91, 024101, (2003)
[5] Kovach, C. K., A biased look at phase locking: Brief critical review and proposed remedy, IEEE Trans. Signal Process., 65, 4468, (2017)
[6] Lepage, K. Q.; Vijayan, S., The relationship between coherence and the phase-locking value, J. Theor. Biol., 435, 106, (2017) · Zbl 1394.92025
[7] Lowet, E.; Roberts, M. J.; Bonizzi, P.; Karel, J.; De Weerd, P., Quantifying neural oscillatory synchronization: A comparison between spectral coherence and phase-locking value approaches, PLoS One, 11, e0146443, (2016)
[8] García-Prieto, J.; Bajo, R.; Pereda, E., Efficient computation of functional brain networks: Toward real-time functional connectivity, Front. Neuroinform., 11, 8, (2017)
[9] Brunner, C.; Scherer, R.; Graimann, B.; Supp, G.; Pfurtscheller, G., Online control of a brain-computer interface using phase synchronization, IEEE Trans. Biomed. Eng., 53, 2501, (2016)
[10] Sburlea, A. I.; Montesano, L.; Minguez, J., Advantages of EEG phase patterns for the detection of gait intention in healthy and stroke subjects, J. Neural Eng., 14, 036004, (2017)
[11] Boashash, B., Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications, Proc. IEEE, 80, 540, (1992)
[12] Gambuzza, L. V.; Gómez-Gardeñes, J.; Frasca, M., Amplitude dynamics favors synchronization in complex networks, Sci. Rep., 6, 24915, (2016)
[13] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, (2001), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0993.37002
[14] Canolty, R. T.; Knight, R. T., The functional role of cross-frequency coupling, Trends Cogn. Sci., 14, 506, (2010)
[15] Rössler, O. E., An equation for continuous chaos, Phys. Lett., 57, 397, (1976) · Zbl 1371.37062
[16] Ott, E., Chaos in Dynamical Systems, (2002), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1006.37001
[17] Tirabassi, G.; Sevilla-Escoboza, R.; Buldú, J. M.; Masoller, C., Inferring the connectivity of coupled oscillators from time-series statistical similarity analysis, Sci. Rep., 5, 10829, (2015)
[18] Timme, M.; Casadiego, J., Revealing networks from dynamics: An introduction, J. Phys. A. Math. Theor., 47, 343001, (2014) · Zbl 1305.92036
[19] Rubido, N.; Martí, A. C.; Bianco-Martínez, E.; Grebogi, C.; Baptista, M. S.; Masoller, C., Exact detection of direct links in networks of interacting dynamical units, New J. Phys., 16, 093010, (2014)
[20] Minati, L., Experimental dynamical characterization of five autonomous chaotic oscillators with tunable series resistance, Chaos, 24, 033110, (2014) · Zbl 1374.34171
[21] Minati, L., Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators, Chaos, 25, 033107, (2015)
[22] See for the experimental time-series.
[23] Chicharro, D.; Andrzejak, R. G., Reliable detection of directional couplings using rank statistics, Phys. Rev. E, 80, 026217, (2009)
[24] Paninski, L., Estimation of entropy and mutual information, Neural Comput., 15, 1191, (2003) · Zbl 1052.62003
[25] Faes, L.; Nollo, G.; Chon, K. H., Assessment of Granger causality by nonlinear model identification: Application to short-term cardiovascular variability, Ann. Biomed. Eng., 36, 381, (2008)
[26] Alonso-Valerdi, L. M.; Salido-Ruiz, R. A.; Ramirez-Mendoza, R. A., Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits, Neuropsychologia, 79, 354, (2015)
[27] Li, X.; Li, D.; Voss, L. J.; Sleigh, J. W., The comodulation measure of neuronal oscillations with general harmonic wavelet bicoherence and application to sleep analysis, Neuroimage, 48, 501, (2009)
[28] Goldberger, A. L.; Amaral, L. A. N.; Glass, L.; Hausdorff, J. M.; Ivanov, P. Ch.; Mark, R. G.; Mietus, J. E.; Moody, G. B.; Peng, C.-K.; Stanley, H. E., PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, Circulation, 101, e215, (2000)
[29] Schalk, G.; McFarland, D. J.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J. R., BCI2000: A general-purpose brain-computer interface (BCI) system, IEEE Trans. Biomed. Eng., 51, 1034, (2004)
[30] See and for the experimental time-series.
[31] Aghaei, A. S.; Mahanta, M. S.; Plataniotis, K. N., Separable common spatio-spectral patterns for motor imagery BCI systems, IEEE Trans. Biomed. Eng., 63, 15, (2016)
[32] Neuper, C.; Pfurtscheller, G., Evidence for distinct beta resonance frequencies in human EEG related to specific sensorimotor cortical areas, Clin. Neurophysiol., 112, 2084, (2001)
[33] Chella, F.; Pizzella, V.; Zappasodi, F.; Marzetti, L., Impact of the reference choice on scalp EEG connectivity estimation, J. Neural Eng., 13, 036016, (2016)
[34] Yamashita, O.; Sato, M. A.; Yoshioka, T.; Tong, F.; Kamitani, Y., Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns, Neuroimage, 42, 1414, (2008)
[35] Jian, W.; Chen, M.; McFarland, D. J., EEG based zero-phase phase-locking value (PLV) and effects of spatial filtering during actual movement, Brain Res. Bull., 130, 156, (2017)
[36] Bruña, R.; Maestú, F.; Pereda, E., Phase locking value revisited: Teaching new tricks to an old dog, J. Neural Eng., 15, 056011, (2018)
[37] McFarland, D. J.; Miner, L. A.; Vaughan, T. M.; Wolpaw, J. R., Mu and beta rhythm topographies during motor imagery and actual movements, Brain Topogr., 12, 177, (2000)
[38] Ahn, M.; Jun, S. C., Performance variation in motor imagery brain-computer interface: A brief review, J. Neurosci. Methods, 243, 103, (2015)
[39] Schreiber, T.; Schmitz, A., Improved surrogate data for nonlinearity tests, Phys. Rev. Lett., 77, 635, (1996)
[40] Yoshimura, N.; Nishimoto, A.; Belkacem, A. N.; Shin, D.; Kambara, H.; Hanakawa, T. S.; Koike, Y., Decoding of covert vowel articulation using electroencephalography cortical currents, Front. Neurosci., 10, 175, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.