Bayrakdar, T.; Ergin, A. A. Hamiltonian dynamical systems and geometry of surfaces in 3-D. (English) Zbl 1499.53018 J. Dyn. Syst. Geom. Theor. 15, No. 2, 163-176 (2017). MSC: 53A05 53A04 37K10 37K25 PDF BibTeX XML Cite \textit{T. Bayrakdar} and \textit{A. A. Ergin}, J. Dyn. Syst. Geom. Theor. 15, No. 2, 163--176 (2017; Zbl 1499.53018) Full Text: DOI OpenURL
Işim Efe, Melike; Abadoğlu, Ender Global existence of bi-Hamiltonian structures on orientable three-dimensional manifolds. (English) Zbl 1373.37140 SIGMA, Symmetry Integrability Geom. Methods Appl. 13, Paper 055, 17 p. (2017). MSC: 37J35 53D35 70G45 37J05 PDF BibTeX XML Cite \textit{M. Işim Efe} and \textit{E. Abadoğlu}, SIGMA, Symmetry Integrability Geom. Methods Appl. 13, Paper 055, 17 p. (2017; Zbl 1373.37140) Full Text: DOI arXiv OpenURL
Arieşanu, Camelia Pop A Hamilton-Poisson model of the Chen-Lee system. (English) Zbl 1255.34013 J. Appl. Math. 2012, Article ID 484028, 11 p. (2012). MSC: 34A26 34C28 34C20 37J45 34D20 34C25 PDF BibTeX XML Cite \textit{C. P. Arieşanu}, J. Appl. Math. 2012, Article ID 484028, 11 p. (2012; Zbl 1255.34013) Full Text: DOI OpenURL
Haas, F. Comment on “Dynamical systems and Poisson structures”. (English) Zbl 1273.37034 J. Math. Phys. 52, No. 12, 124101, 2 p. (2011). MSC: 37J05 37J15 53D17 70G45 PDF BibTeX XML Cite \textit{F. Haas}, J. Math. Phys. 52, No. 12, 124101, 2 p. (2011; Zbl 1273.37034) Full Text: DOI OpenURL
Pop, Camelia; Petrişor, Camelia; Bălă, Dumitru Hamilton-Poisson realizations for the Lü system. (English) Zbl 1223.34067 Math. Probl. Eng. 2011, Article ID 842325, 13 p. (2011). MSC: 34C28 PDF BibTeX XML Cite \textit{C. Pop} et al., Math. Probl. Eng. 2011, Article ID 842325, 13 p. (2011; Zbl 1223.34067) Full Text: DOI OpenURL
Gürses, Metin; Guseinov, Gusein Sh.; Zheltukhin, Kostyantyn Dynamical systems and Poisson structures. (English) Zbl 1304.37035 J. Math. Phys. 50, No. 11, 112703, 9 p. (2009). MSC: 37J05 37J15 53D17 70G45 PDF BibTeX XML Cite \textit{M. Gürses} et al., J. Math. Phys. 50, No. 11, 112703, 9 p. (2009; Zbl 1304.37035) Full Text: DOI arXiv Link OpenURL
Abadoğlu, E.; Gūmral, H. Bi-Hamiltonian structure in Frenet-Serret frame. (English) Zbl 1157.37330 Physica D 238, No. 5, 526-530 (2009). MSC: 37K05 PDF BibTeX XML Cite \textit{E. Abadoğlu} and \textit{H. Gūmral}, Physica D 238, No. 5, 526--530 (2009; Zbl 1157.37330) Full Text: DOI OpenURL
Hernández-Bermejo, Benito Generalization of solutions of the Jacobi PDEs associated to time reparametrizations of Poisson systems. (English) Zbl 1149.35007 J. Math. Anal. Appl. 344, No. 2, 655-666 (2008). Reviewer: Werner M. Seiler (Kassel) MSC: 35A30 70G45 53D17 PDF BibTeX XML Cite \textit{B. Hernández-Bermejo}, J. Math. Anal. Appl. 344, No. 2, 655--666 (2008; Zbl 1149.35007) Full Text: DOI arXiv OpenURL
Haas, F. Jacobi structures in \(\mathbb R^{3}\). (English) Zbl 1111.53067 J. Math. Phys. 46, No. 10, 102703, 11 p. (2005). MSC: 53D17 53D10 70G45 70S99 PDF BibTeX XML Cite \textit{F. Haas}, J. Math. Phys. 46, No. 10, 102703, 11 p. (2005; Zbl 1111.53067) Full Text: DOI arXiv OpenURL
Huang, Debin Bi-Hamiltonian structure and homoclinic orbits of the Maxwell–Bloch equations with RWA. (English) Zbl 1067.37092 Chaos Solitons Fractals 22, No. 1, 207-212 (2004). MSC: 37K10 35F20 35Q60 78A60 PDF BibTeX XML Cite \textit{D. Huang}, Chaos Solitons Fractals 22, No. 1, 207--212 (2004; Zbl 1067.37092) Full Text: DOI OpenURL
Hernández-Bermejo, Benito New solutions of the Jacobi equations for three-dimensional Poisson structures. (English) Zbl 1047.70040 J. Math. Phys. 42, No. 10, 4984-4996 (2001). MSC: 70G45 53D17 PDF BibTeX XML Cite \textit{B. Hernández-Bermejo}, J. Math. Phys. 42, No. 10, 4984--4996 (2001; Zbl 1047.70040) Full Text: DOI arXiv OpenURL
Cairó, Laurent; Feix, Marc R. Comments on: Hamiltonian structures for \(n\)-dimensional Lotka-Volterra equations. (English) Zbl 0865.34008 J. Math. Phys. 37, No. 7, 3644-3645 (1996). MSC: 34A26 37J99 PDF BibTeX XML Cite \textit{L. Cairó} and \textit{M. R. Feix}, J. Math. Phys. 37, No. 7, 3644--3645 (1996; Zbl 0865.34008) Full Text: DOI OpenURL