Li, Li; Fan, Chengcheng; Yu, Fajun Soliton solution, breather solution and rational wave solution for the coupled macroscopic fluctuation theory equation in the optimal path of the process. (English) Zbl 07881980 Wave Motion 128, Article ID 103329, 13 p. (2024). MSC: 35-XX 37-XX PDFBibTeX XMLCite \textit{L. Li} et al., Wave Motion 128, Article ID 103329, 13 p. (2024; Zbl 07881980) Full Text: DOI
Tariq, Kalim U.; Liu, Jian-Guo; Nisar, Sana Study of explicit travelling wave solutions of nonlinear \((2+1)\)-dimensional Zoomeron model in mathematical physics. (English) Zbl 07877769 J. Nonlinear Complex Data Sci. 25, No. 1, 109-124 (2024). MSC: 35-XX 76-XX PDFBibTeX XMLCite \textit{K. U. Tariq} et al., J. Nonlinear Complex Data Sci. 25, No. 1, 109--124 (2024; Zbl 07877769) Full Text: DOI
Seadawy, Aly R.; Alsaedi, Bayan A. Variational principle and optical soliton solutions for some types of nonlinear Schrödinger dynamical systems. (English) Zbl 07867024 Int. J. Geom. Methods Mod. Phys. 21, No. 6, Article ID 2430004, 85 p. (2024). MSC: 83-XX 53-XX PDFBibTeX XMLCite \textit{A. R. Seadawy} and \textit{B. A. Alsaedi}, Int. J. Geom. Methods Mod. Phys. 21, No. 6, Article ID 2430004, 85 p. (2024; Zbl 07867024) Full Text: DOI
Yang, Liu; Gao, Ben Solitary wave solution, traveling wave solution and other solutions of variable-coefficients chiral Schrödinger equation. (English) Zbl 07867017 Int. J. Geom. Methods Mod. Phys. 21, No. 5, Article ID 2450100, 22 p. (2024). MSC: 83-XX 53-XX PDFBibTeX XMLCite \textit{L. Yang} and \textit{B. Gao}, Int. J. Geom. Methods Mod. Phys. 21, No. 5, Article ID 2450100, 22 p. (2024; Zbl 07867017) Full Text: DOI
Qiang, Y. Long; Broderick, Neil G. R.; de Sterke, C. Martijn Analytic method for finding stationary solutions to generalized nonlinear Schrödinger equations. (English) Zbl 07864741 Physica D 462, Article ID 134148, 6 p. (2024). MSC: 35Q55 78A60 35A20 35C08 37K10 35D30 PDFBibTeX XMLCite \textit{Y. L. Qiang} et al., Physica D 462, Article ID 134148, 6 p. (2024; Zbl 07864741) Full Text: DOI
Hussain, A.; Usman, M.; Zaman, F. D.; Ibrahim, T. F.; Dawood, A. A. Symmetry analysis, closed-form invariant solutions and dynamical wave structures of the Benney-Luke equation using optimal system of Lie subalgebras. (English) Zbl 07846728 Chin. J. Phys., Taipei 84, 66-88 (2023). MSC: 35Q35 76M60 17B81 35R03 35A24 35C08 35C05 35C07 PDFBibTeX XMLCite \textit{A. Hussain} et al., Chin. J. Phys., Taipei 84, 66--88 (2023; Zbl 07846728) Full Text: DOI
Sharma, Aniruddha Kumar; Yadav, Shalini; Arora, Rajan Invariance analysis, optimal system, and group invariant solutions of \((3+1)\)-dimensional non-linear MA-FAN equation. (English) Zbl 1534.76067 Math. Methods Appl. Sci. 46, No. 17, 17883-17909 (2023). MSC: 76M60 35B06 PDFBibTeX XMLCite \textit{A. K. Sharma} et al., Math. Methods Appl. Sci. 46, No. 17, 17883--17909 (2023; Zbl 1534.76067) Full Text: DOI
El-Ganaini, Shoukry; Kumar, Sachin Symbolic computation to construct new soliton solutions and dynamical behaviors of various wave structures for two different extended and generalized nonlinear Schrödinger equations using the new improved modified generalized sub-ODE proposed method. (English) Zbl 1532.35111 Math. Comput. Simul. 208, 28-56 (2023). MSC: 35C08 35Q55 PDFBibTeX XMLCite \textit{S. El-Ganaini} and \textit{S. Kumar}, Math. Comput. Simul. 208, 28--56 (2023; Zbl 1532.35111) Full Text: DOI
Kumar, Sachin; Mann, Nikita; Kharbanda, Harsha; Inc, Mustafa Dynamical behavior of analytical soliton solutions, bifurcation analysis, and quasi-periodic solution to the \((2+1)\)-dimensional Konopelchenko-Dubrovsky (KD) system. (English) Zbl 1518.35568 Anal. Math. Phys. 13, No. 3, Paper No. 40, 30 p. (2023). Reviewer: Jipeng Cheng (Xuzhou) MSC: 35Q51 35C08 35C09 35B10 35B20 35B32 35A20 47J35 68W30 PDFBibTeX XMLCite \textit{S. Kumar} et al., Anal. Math. Phys. 13, No. 3, Paper No. 40, 30 p. (2023; Zbl 1518.35568) Full Text: DOI
Ahmed, Muhammad Ozair; Naeem, Rishi; Tarar, Muhammad Akhtar; Iqbal, Muhammad Sajid; Inc, Mustafa; Afzal, Farkhanda Existence theories and exact solutions of nonlinear PDEs dominated by singularities and time noise. (English) Zbl 1511.35310 Nonlinear Anal., Model. Control 28, No. 2, 194-208 (2023). MSC: 35Q53 35A24 60H40 35B45 35R09 35A01 47H10 35R60 PDFBibTeX XMLCite \textit{M. O. Ahmed} et al., Nonlinear Anal., Model. Control 28, No. 2, 194--208 (2023; Zbl 1511.35310) Full Text: DOI OA License
Iqbal, Muhammad Sajid; Ahmed, Nauman; Naeem, Rishi; Akgül, Ali; Razzaque, Abdul; Inc, Mustafa; Khurshid, Hina Dynamical behavior of cancer cell densities in two dimensional domain by the representation theory of solitons. (English) Zbl 1519.92041 Phys. Lett., A 463, Article ID 128670, 15 p. (2023). MSC: 92C32 92C37 35Q92 35C08 PDFBibTeX XMLCite \textit{M. S. Iqbal} et al., Phys. Lett., A 463, Article ID 128670, 15 p. (2023; Zbl 1519.92041) Full Text: DOI
Li, Wenhe; Shang, Jiaxin Traveling wave solutions of Hirota-Satsuma coupled KdV equation. (Chinese. English summary) Zbl 07801027 Acta Math. Appl. Sin. 45, No. 4, 500-508 (2022). MSC: 62G05 62N01 PDFBibTeX XMLCite \textit{W. Li} and \textit{J. Shang}, Acta Math. Appl. Sin. 45, No. 4, 500--508 (2022; Zbl 07801027) Full Text: Link
Ghose-Choudhury, A.; Garai, Sudip Some exact wave solutions of nonlinear partial differential equations by means of comparison with certain standard ordinary differential equations. (English) Zbl 1529.35122 Math. Methods Appl. Sci. 45, No. 16, 9297-9307 (2022). MSC: 35C07 34A34 34C14 PDFBibTeX XMLCite \textit{A. Ghose-Choudhury} and \textit{S. Garai}, Math. Methods Appl. Sci. 45, No. 16, 9297--9307 (2022; Zbl 1529.35122) Full Text: DOI
Ünsal, Ömer; Sakartepe, Zeynep Complexiton solutions of some nonlinear partial differential equations via modified double sub-equation method. (English) Zbl 1509.35010 Casp. J. Math. Sci. 11, No. 2, 381-396 (2022). MSC: 35A25 35C07 PDFBibTeX XMLCite \textit{Ö. Ünsal} and \textit{Z. Sakartepe}, Casp. J. Math. Sci. 11, No. 2, 381--396 (2022; Zbl 1509.35010) Full Text: DOI
Yang, Deniu; Zhang, Juan The soliton wave solutions and bifurcations of the \((2 + 1)\)-dimensional dissipative long wave equation. (English) Zbl 1497.35425 J. Nonlinear Math. Phys. 29, No. 3, 659-677 (2022). MSC: 35Q53 35Q51 35C07 35B32 PDFBibTeX XMLCite \textit{D. Yang} and \textit{J. Zhang}, J. Nonlinear Math. Phys. 29, No. 3, 659--677 (2022; Zbl 1497.35425) Full Text: DOI OA License
Kumar, Sachin; Kumar, Amit Dynamical behaviors and abundant optical soliton solutions of the cold bosonic atoms in a zig-zag optical lattice model using two integral schemes. (English) Zbl 1530.35253 Math. Comput. Simul. 201, 254-274 (2022). MSC: 35Q53 35C08 37K40 PDFBibTeX XMLCite \textit{S. Kumar} and \textit{A. Kumar}, Math. Comput. Simul. 201, 254--274 (2022; Zbl 1530.35253) Full Text: DOI
Ekici, Mustafa; Ünal, Metin Application of the rational \((G^\prime/G)\)-expansion method for solving some coupled and combined wave equations. (English) Zbl 1491.35111 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 71, No. 1, 116-132 (2022). MSC: 35C07 35C08 35A22 35L71 35Q53 PDFBibTeX XMLCite \textit{M. Ekici} and \textit{M. Ünal}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 71, No. 1, 116--132 (2022; Zbl 1491.35111) Full Text: DOI
Yépez-Martínez, H.; Gómez-Aguilar, J. F. Optical solitons solution of resonance nonlinear Schrödinger type equation with Atangana’s-conformable derivative using sub-equation method. (English) Zbl 1520.78046 Waves Random Complex Media 31, No. 3, 573-596 (2021). MSC: 78A60 35C08 35A20 35Q55 35Q41 PDFBibTeX XMLCite \textit{H. Yépez-Martínez} and \textit{J. F. Gómez-Aguilar}, Waves Random Complex Media 31, No. 3, 573--596 (2021; Zbl 1520.78046) Full Text: DOI
Jhangeer, Adil; Hussain, Amjad; Junaid-U-Rehman, M.; Baleanu, Dumitru; Riaz, Muhammad Bilal Quasi-periodic, chaotic and travelling wave structures of modified Gardner equation. (English) Zbl 1498.35455 Chaos Solitons Fractals 143, Article ID 110578, 10 p. (2021). MSC: 35Q40 PDFBibTeX XMLCite \textit{A. Jhangeer} et al., Chaos Solitons Fractals 143, Article ID 110578, 10 p. (2021; Zbl 1498.35455) Full Text: DOI
He, Ji-Huan; Hou, Wei-Fan; He, Chun-Hui; Saeed, Tareq; Hayat, Tasawar Variational approach to fractal solitary waves. (English) Zbl 1482.35249 Fractals 29, No. 7, Article ID 2150199, 5 p. (2021). MSC: 35R11 35C07 35C08 35Q35 PDFBibTeX XMLCite \textit{J.-H. He} et al., Fractals 29, No. 7, Article ID 2150199, 5 p. (2021; Zbl 1482.35249) Full Text: DOI
Neirameh, Ahmad Solitary wave solutions to the multidimensional Landau-Lifshitz equation. (English) Zbl 1478.35086 Adv. Math. Phys. 2021, Article ID 5538516, 7 p. (2021). MSC: 35C08 35Q60 PDFBibTeX XMLCite \textit{A. Neirameh}, Adv. Math. Phys. 2021, Article ID 5538516, 7 p. (2021; Zbl 1478.35086) Full Text: DOI OA License
Yépez-Martínez, H.; Khater, Mostafa M. A.; Rezazadeh, Hadi; Inc, Mustafa Analytical novel solutions to the fractional optical dynamics in a medium with polynomial law nonlinearity and higher order dispersion with a new local fractional derivative. (English) Zbl 1479.78007 Phys. Lett., A 420, Article ID 127744, 19 p. (2021). MSC: 78A40 78A48 35Q55 81U30 26A33 33C45 PDFBibTeX XMLCite \textit{H. Yépez-Martínez} et al., Phys. Lett., A 420, Article ID 127744, 19 p. (2021; Zbl 1479.78007) Full Text: DOI
Ghosh, Arindam; Maitra, Sarit The first integral method and some nonlinear models. (English) Zbl 1476.35079 Comput. Appl. Math. 40, No. 3, Paper No. 79, 16 p. (2021). MSC: 35C07 13P25 35A25 35Q51 35Q53 PDFBibTeX XMLCite \textit{A. Ghosh} and \textit{S. Maitra}, Comput. Appl. Math. 40, No. 3, Paper No. 79, 16 p. (2021; Zbl 1476.35079) Full Text: DOI
Dang, Guoqiang Meromorphic solutions of the \((2+1)\)- and the \((3+1)\)-dimensional BLMP equations and the \((2+1)\)-dimensional KMN equation. (English) Zbl 1469.30063 Demonstr. Math. 54, 129-139 (2021). MSC: 30D30 34M04 34M05 PDFBibTeX XMLCite \textit{G. Dang}, Demonstr. Math. 54, 129--139 (2021; Zbl 1469.30063) Full Text: DOI OA License
Hyder, Abd-Allah; Soliman, Ahmed H. An extended Kudryashov technique for solving stochastic nonlinear models with generalized conformable derivatives. (English) Zbl 1458.60073 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105730, 14 p. (2021). MSC: 60H15 35Q53 65M70 PDFBibTeX XMLCite \textit{A.-A. Hyder} and \textit{A. H. Soliman}, Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105730, 14 p. (2021; Zbl 1458.60073) Full Text: DOI
Akinyemi, Lanre; Şenol, Mehmet; Iyiola, Olaniyi S. Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. (English) Zbl 1524.35672 Math. Comput. Simul. 182, 211-233 (2021). MSC: 35R11 35Q35 35Q53 PDFBibTeX XMLCite \textit{L. Akinyemi} et al., Math. Comput. Simul. 182, 211--233 (2021; Zbl 1524.35672) Full Text: DOI
Darvishi, M. T.; Najafi, M.; Wazwaz, A. M. New extended rational trigonometric methods and applications. (English) Zbl 1505.35318 Waves Random Complex Media 30, No. 1, 5-26 (2020). MSC: 35Q53 76U05 PDFBibTeX XMLCite \textit{M. T. Darvishi} et al., Waves Random Complex Media 30, No. 1, 5--26 (2020; Zbl 1505.35318) Full Text: DOI
Hyder, Abd-Allah White noise theory and general improved Kudryashov method for stochastic nonlinear evolution equations with conformable derivatives. (English) Zbl 1482.35251 Adv. Difference Equ. 2020, Paper No. 236, 19 p. (2020). MSC: 35R11 35Q53 60H15 26A33 35Q51 37L55 PDFBibTeX XMLCite \textit{A.-A. Hyder}, Adv. Difference Equ. 2020, Paper No. 236, 19 p. (2020; Zbl 1482.35251) Full Text: DOI OA License
Song, Wenjing; Yang, Ganshan Cauchy problem for the generalized Davey-Stewartson systems in Besov spaces and some counterexamples. (English) Zbl 1477.35082 J. Appl. Anal. Comput. 10, No. 6, 2418-2438 (2020). MSC: 35J47 PDFBibTeX XMLCite \textit{W. Song} and \textit{G. Yang}, J. Appl. Anal. Comput. 10, No. 6, 2418--2438 (2020; Zbl 1477.35082) Full Text: DOI
Wang, Yaji; Xu, Hang; Sun, Q. New groups of solutions to the Whitham-Broer-Kaup equation. (English) Zbl 1457.35087 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 11, 1735-1746 (2020). MSC: 35Q86 86A15 35C07 35B32 PDFBibTeX XMLCite \textit{Y. Wang} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 11, 1735--1746 (2020; Zbl 1457.35087) Full Text: DOI OA License
Li, Xinyue; Zhao, Qiulan; Yang, Qianqian Integrable asymmetric AKNS model with multi-component. (English) Zbl 1448.35448 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105434, 21 p. (2020). MSC: 35Q53 37K06 PDFBibTeX XMLCite \textit{X. Li} et al., Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105434, 21 p. (2020; Zbl 1448.35448) Full Text: DOI
Boateng, Kwasi; Yang, Weiguo; Yaro, David; Otoo, Michael Ezra Jacobi elliptic function solutions and traveling wave solutions of the \((2+1)\)-dimensional Gardner-KP equation. (English) Zbl 1448.35184 Math. Methods Appl. Sci. 43, No. 6, 3457-3472 (2020). MSC: 35J60 PDFBibTeX XMLCite \textit{K. Boateng} et al., Math. Methods Appl. Sci. 43, No. 6, 3457--3472 (2020; Zbl 1448.35184) Full Text: DOI
Thabet, Hayman; Kendre, Subhash; Peters, James; Kaplan, Melike Solitary wave solutions and traveling wave solutions for systems of time-fractional nonlinear wave equations via an analytical approach. (English) Zbl 1449.93123 Comput. Appl. Math. 39, No. 3, Paper No. 144, 19 p. (2020). MSC: 93C20 93C10 35R11 35C07 PDFBibTeX XMLCite \textit{H. Thabet} et al., Comput. Appl. Math. 39, No. 3, Paper No. 144, 19 p. (2020; Zbl 1449.93123) Full Text: DOI
Wei, Yi; Zhang, Xing-Qiu; Shao, Zhu-Yan; Gu, Lu-Feng; Yang, Xiao-Feng Exact combined solutions for the \((2+1)\)-dimensional dispersive long water-wave equations. (English) Zbl 1440.35280 J. Funct. Spaces 2020, Article ID 3707924, 7 p. (2020). MSC: 35Q35 76B25 35C07 35C08 35B10 PDFBibTeX XMLCite \textit{Y. Wei} et al., J. Funct. Spaces 2020, Article ID 3707924, 7 p. (2020; Zbl 1440.35280) Full Text: DOI OA License
Ha, Jinting; Zhang, Huiqun; Zhao, Qiulan Exact solutions for a Dirac-type equation with N-fold Darboux transformation. (English) Zbl 1464.35284 J. Appl. Anal. Comput. 9, No. 1, 200-210 (2019). MSC: 35Q51 35Q41 37K40 37K35 17B81 PDFBibTeX XMLCite \textit{J. Ha} et al., J. Appl. Anal. Comput. 9, No. 1, 200--210 (2019; Zbl 1464.35284) Full Text: DOI
Liu, Chun-Ping A note on the transformation of variables of KP equation, cylindrical KP equation and spherical KP equation. (English) Zbl 1452.35172 Commun. Theor. Phys. 71, No. 2, 170-174 (2019). MSC: 35Q53 35A30 PDFBibTeX XMLCite \textit{C.-P. Liu}, Commun. Theor. Phys. 71, No. 2, 170--174 (2019; Zbl 1452.35172) Full Text: DOI
Kumar, Sachin; Kumar, Amit Lie symmetry reductions and group invariant solutions of \((2+1)\)-dimensional modified Veronese web equation. (English) Zbl 1430.37086 Nonlinear Dyn. 98, No. 3, 1891-1903 (2019). MSC: 37K40 35B06 70G65 PDFBibTeX XMLCite \textit{S. Kumar} and \textit{A. Kumar}, Nonlinear Dyn. 98, No. 3, 1891--1903 (2019; Zbl 1430.37086) Full Text: DOI
Liang, Jinfu; Wang, Xun Consistent Riccati expansion for finding interaction solutions of (2+1)-dimensional modified dispersive water-wave system. (English) Zbl 1434.35142 Math. Methods Appl. Sci. 42, No. 18, 6131-6138 (2019). MSC: 35Q51 35Q53 83C15 35C08 35C09 35C99 35B10 PDFBibTeX XMLCite \textit{J. Liang} and \textit{X. Wang}, Math. Methods Appl. Sci. 42, No. 18, 6131--6138 (2019; Zbl 1434.35142) Full Text: DOI
Aljahdaly, Noufe H.; Alqudah, Manar A. Analytical solutions of a modified predator-prey model through a new ecological interaction. (English) Zbl 1428.92084 Comput. Math. Methods Med. 2019, Article ID 4849393, 7 p. (2019). MSC: 92D25 92D40 35Q92 35K57 PDFBibTeX XMLCite \textit{N. H. Aljahdaly} and \textit{M. A. Alqudah}, Comput. Math. Methods Med. 2019, Article ID 4849393, 7 p. (2019; Zbl 1428.92084) Full Text: DOI
Thabet, Hayman; Kendre, Subhash; Peters, James Analytical solutions for nonlinear systems of conformable space-time fractional partial differential equations via generalized fractional differential transform. (English) Zbl 1422.93094 Vietnam J. Math. 47, No. 2, 487-507 (2019). MSC: 93C20 93C10 35R11 PDFBibTeX XMLCite \textit{H. Thabet} et al., Vietnam J. Math. 47, No. 2, 487--507 (2019; Zbl 1422.93094) Full Text: DOI
Wang, Heng; Zheng, Shuhua A note on bifurcations and travelling wave solutions of a (2+1)-dimensional nonlinear Schrödinger equation. (English) Zbl 1420.35386 Anal. Math. Phys. 9, No. 1, 251-261 (2019). MSC: 35Q55 35C07 35B32 35B44 PDFBibTeX XMLCite \textit{H. Wang} and \textit{S. Zheng}, Anal. Math. Phys. 9, No. 1, 251--261 (2019; Zbl 1420.35386) Full Text: DOI
Mancas, Stefan C. Traveling wave solutions to Kawahara and related equations. (English) Zbl 1415.35081 Differ. Equ. Dyn. Syst. 27, No. 1-3, 19-37 (2019). MSC: 35C07 35Q53 PDFBibTeX XMLCite \textit{S. C. Mancas}, Differ. Equ. Dyn. Syst. 27, No. 1--3, 19--37 (2019; Zbl 1415.35081) Full Text: DOI arXiv
Arora, Rajan; Chauhan, Astha Lie symmetry analysis and some exact solutions of \((2+1)\)-dimensional KdV-Burgers equation. (English) Zbl 1412.35017 Int. J. Appl. Comput. Math. 5, No. 1, Paper No. 15, 13 p. (2019). MSC: 35B06 35Q53 PDFBibTeX XMLCite \textit{R. Arora} and \textit{A. Chauhan}, Int. J. Appl. Comput. Math. 5, No. 1, Paper No. 15, 13 p. (2019; Zbl 1412.35017) Full Text: DOI
Akbulut, Arzu; Taşcan, Filiz On symmetries, conservation laws and exact solutions of the nonlinear Schrödinger-Hirota equation. (English) Zbl 07583362 Waves Random Complex Media 28, No. 2, 389-398 (2018). MSC: 74-XX 78-XX PDFBibTeX XMLCite \textit{A. Akbulut} and \textit{F. Taşcan}, Waves Random Complex Media 28, No. 2, 389--398 (2018; Zbl 07583362) Full Text: DOI
Okeke, Justina Ebele; Narain, Rivendra; Govinder, Keshlan Sathasiva New exact solutions of a generalised Boussinesq equation with damping term and a system of variant Boussinesq equations via double reduction theory. (English) Zbl 1456.35069 J. Appl. Anal. Comput. 8, No. 2, 471-485 (2018). MSC: 35C07 35B06 35Q53 PDFBibTeX XMLCite \textit{J. E. Okeke} et al., J. Appl. Anal. Comput. 8, No. 2, 471--485 (2018; Zbl 1456.35069) Full Text: DOI OA License
Li, Zhu Finite genus solutions for Geng hierarchy. (English) Zbl 1420.35295 J. Nonlinear Math. Phys. 25, No. 1, 54-65 (2018). MSC: 35Q51 35C08 37K10 PDFBibTeX XMLCite \textit{Z. Li}, J. Nonlinear Math. Phys. 25, No. 1, 54--65 (2018; Zbl 1420.35295) Full Text: DOI OA License
Ünsal, Ömer Complexiton solutions for \((3+1)\) dimensional KdV-type equation. (English) Zbl 1409.35185 Comput. Math. Appl. 75, No. 7, 2466-2472 (2018). MSC: 35Q53 35C08 37K10 PDFBibTeX XMLCite \textit{Ö. Ünsal}, Comput. Math. Appl. 75, No. 7, 2466--2472 (2018; Zbl 1409.35185) Full Text: DOI
Fu, Chen; Lu, Chang Na; Yang, Hong Wei Time-space fractional \((2+1)\) dimensional nonlinear Schrödinger equation for envelope gravity waves in baroclinic atmosphere and conservation laws as well as exact solutions. (English) Zbl 1445.35281 Adv. Difference Equ. 2018, Paper No. 56, 20 p. (2018). MSC: 35Q55 35R11 26A33 PDFBibTeX XMLCite \textit{C. Fu} et al., Adv. Difference Equ. 2018, Paper No. 56, 20 p. (2018; Zbl 1445.35281) Full Text: DOI OA License
Zhao, Bao Jun; Wang, Ru Yun; Sun, Wen Jin; Yang, Hong Wei Combined ZK-mzk equation for Rossby solitary waves with complete Coriolis force and its conservation laws as well as exact solutions. (English) Zbl 1445.35280 Adv. Difference Equ. 2018, Paper No. 42, 16 p. (2018). MSC: 35Q51 35C08 37K40 37K45 PDFBibTeX XMLCite \textit{B. J. Zhao} et al., Adv. Difference Equ. 2018, Paper No. 42, 16 p. (2018; Zbl 1445.35280) Full Text: DOI OA License
Meng, Yong Expanded (\(G/G^2\)) expansion method to solve separated variables for the \(2+1\)-dimensional NNV equation. (English) Zbl 1440.35294 Adv. Math. Phys. 2018, Article ID 9248174, 6 p. (2018). MSC: 35Q53 35C07 35A30 PDFBibTeX XMLCite \textit{Y. Meng}, Adv. Math. Phys. 2018, Article ID 9248174, 6 p. (2018; Zbl 1440.35294) Full Text: DOI OA License
Shi, Yazhou; Li, Xiangpeng; Zhang, Ben-gong Traveling wave solutions of two nonlinear wave equations by \((G^\prime/G)\)-expansion method. (English) Zbl 1440.35300 Adv. Math. Phys. 2018, Article ID 8583418, 8 p. (2018). MSC: 35Q53 35C07 PDFBibTeX XMLCite \textit{Y. Shi} et al., Adv. Math. Phys. 2018, Article ID 8583418, 8 p. (2018; Zbl 1440.35300) Full Text: DOI OA License
Abdelsalam, U. M.; Allehiany, F. M. Different nonlinear solutions of KP equation in dusty plasmas. (English) Zbl 1391.76868 Arab. J. Sci. Eng. 43, No. 1, 399-406 (2018). MSC: 76X05 35Q35 PDFBibTeX XMLCite \textit{U. M. Abdelsalam} and \textit{F. M. Allehiany}, Arab. J. Sci. Eng. 43, No. 1, 399--406 (2018; Zbl 1391.76868) Full Text: DOI
Wang, Xiu-Bin; Tian, Shou-Fu; Zhang, Tian-Tian Characteristics of the breather and rogue waves in a \((2+1)\)-dimensional nonlinear Schrödinger equation. (English) Zbl 1392.35296 Proc. Am. Math. Soc. 146, No. 8, 3353-3365 (2018). MSC: 35Q55 35Q51 35P30 81Q05 PDFBibTeX XMLCite \textit{X.-B. Wang} et al., Proc. Am. Math. Soc. 146, No. 8, 3353--3365 (2018; Zbl 1392.35296) Full Text: DOI
Gao, Ben Symmetry analysis and explicit power series solutions of the Boussinesq-Whitham-Broer-Kaup equation. (English) Zbl 07659368 Waves Random Complex Media 27, No. 4, 700-710 (2017). MSC: 74-XX 78-XX PDFBibTeX XMLCite \textit{B. Gao}, Waves Random Complex Media 27, No. 4, 700--710 (2017; Zbl 07659368) Full Text: DOI
Amirov, Sherif; Anutgan, Mustafa Analytical solitary wave solutions for the nonlinear analogues of the Boussinesq and sixth-order modified Boussinesq equations. (English) Zbl 1441.35209 J. Appl. Anal. Comput. 7, No. 4, 1613-1623 (2017). MSC: 35Q51 35Q53 PDFBibTeX XMLCite \textit{S. Amirov} and \textit{M. Anutgan}, J. Appl. Anal. Comput. 7, No. 4, 1613--1623 (2017; Zbl 1441.35209) Full Text: DOI OA License
Liu, Xiuying Exact travelling wave solutions for nonlinear Schrödinger equation with variable coefficients. (English) Zbl 1447.35100 J. Appl. Anal. Comput. 7, No. 4, 1586-1597 (2017). MSC: 35C07 35Q55 PDFBibTeX XMLCite \textit{X. Liu}, J. Appl. Anal. Comput. 7, No. 4, 1586--1597 (2017; Zbl 1447.35100) Full Text: DOI OA License
Sazzad Hossain, A. K. M. Kazi; Ali Akbar, M. Closed form solutions of two nonlinear equation via the enhanced \((G'/G)\)-expansion method. (English) Zbl 1438.35367 Cogent Math. 4, Article ID 1355958, 12 p. (2017). MSC: 35Q53 35C05 35C08 PDFBibTeX XMLCite \textit{A. K. M. K. Sazzad Hossain} and \textit{M. Ali Akbar}, Cogent Math. 4, Article ID 1355958, 12 p. (2017; Zbl 1438.35367) Full Text: DOI OA License
Zhang, Chuhan; Zhang, Zhe Application of the enhanced modified simple equation method for Burger-Fisher and modified Volterra equations. (English) Zbl 1444.35136 Adv. Difference Equ. 2017, Paper No. 145, 8 p. (2017). MSC: 35Q55 35Q51 35C08 PDFBibTeX XMLCite \textit{C. Zhang} and \textit{Z. Zhang}, Adv. Difference Equ. 2017, Paper No. 145, 8 p. (2017; Zbl 1444.35136) Full Text: DOI OA License
Su, Ting; Dai, Hui-Hui Theta function solutions of the 3 + 1-dimensional Jimbo-Miwa equation. (English) Zbl 1426.35207 Math. Probl. Eng. 2017, Article ID 2924947, 9 p. (2017). MSC: 35Q53 35B10 35C05 35Q51 PDFBibTeX XMLCite \textit{T. Su} and \textit{H.-H. Dai}, Math. Probl. Eng. 2017, Article ID 2924947, 9 p. (2017; Zbl 1426.35207) Full Text: DOI
Thabet, Hayman; Kendre, Subhash; Chalishajar, Dimplekumar New analytical technique for solving a system of nonlinear fractional partial differential equations. (English) Zbl 1395.65055 Mathematics 5, No. 4, Paper No. 47, 15 p. (2017); correction ibid. 6, No. 2, Paper No. 26, 1 p. (2018). MSC: 65M12 65M15 35R11 26A33 35C07 35C08 PDFBibTeX XMLCite \textit{H. Thabet} et al., Mathematics 5, No. 4, Paper No. 47, 15 p. (2017; Zbl 1395.65055) Full Text: DOI OA License
Zayed, Elsayed M. E.; Amer, Yasser A. Many exact solutions for a higher-order nonlinear Schrödinger equation with non-Kerr terms describing the propagation of femtosecond optical pulses in nonlinear optical fibers. (English) Zbl 1382.35282 Comput. Math. Model. 28, No. 1, 118-139 (2017). MSC: 35Q55 35C05 PDFBibTeX XMLCite \textit{E. M. E. Zayed} and \textit{Y. A. Amer}, Comput. Math. Model. 28, No. 1, 118--139 (2017; Zbl 1382.35282) Full Text: DOI
Elboree, Mohammed K. Conservation laws, soliton solutions and periodic solutions for generalized coupled Zakharov-Kuznetsov equations. (English) Zbl 1380.35062 Chaos Solitons Fractals 104, 607-612 (2017). MSC: 35G20 35B06 PDFBibTeX XMLCite \textit{M. K. Elboree}, Chaos Solitons Fractals 104, 607--612 (2017; Zbl 1380.35062) Full Text: DOI
Elboree, Mohammed K. Conservation laws, soliton solutions for modified Camassa-Holm equation and \((2+1)\)-dimensional ZK-BBM equation. (English) Zbl 1377.37095 Nonlinear Dyn. 89, No. 4, 2979-2994 (2017). MSC: 37K10 35C08 PDFBibTeX XMLCite \textit{M. K. Elboree}, Nonlinear Dyn. 89, No. 4, 2979--2994 (2017; Zbl 1377.37095) Full Text: DOI
Ünsal, Ömer; Bekir, Ahmet; Taşcan, Filiz; Özer, Mehmet Naci Complexiton solutions for two nonlinear partial differential equations via modification of simplified Hirota method. (English) Zbl 1375.35464 Waves Random Complex Media 27, No. 1, 117-128 (2017). MSC: 35Q53 35C08 35A30 37K10 37K40 PDFBibTeX XMLCite \textit{Ö. Ünsal} et al., Waves Random Complex Media 27, No. 1, 117--128 (2017; Zbl 1375.35464) Full Text: DOI
Gao, Hui; Xu, Tianzhou; Yang, Shaojie; Wang, Gangwei Analytical study of solitons for the variant Boussinesq equations. (English) Zbl 1375.35073 Nonlinear Dyn. 88, No. 2, 1139-1146 (2017). MSC: 35C08 35C07 PDFBibTeX XMLCite \textit{H. Gao} et al., Nonlinear Dyn. 88, No. 2, 1139--1146 (2017; Zbl 1375.35073) Full Text: DOI
Abdelsalam, U. M. Exact travelling solutions of two coupled \((2 + 1)\)-dimensional equations. (English) Zbl 1372.35065 J. Egypt. Math. Soc. 25, No. 2, 125-128 (2017). MSC: 35C07 35C08 35B10 35C09 PDFBibTeX XMLCite \textit{U. M. Abdelsalam}, J. Egypt. Math. Soc. 25, No. 2, 125--128 (2017; Zbl 1372.35065) Full Text: DOI OA License
Wang, Mingliang; Zhang, Jinliang; Li, Xiangzheng \(N\)-dimensional auto-Bäcklund transformation and exact solutions to \(n\)-dimensional Burgers system. (English) Zbl 1348.35012 Appl. Math. Lett. 63, 46-52 (2017). MSC: 35A22 58J72 35C05 PDFBibTeX XMLCite \textit{M. Wang} et al., Appl. Math. Lett. 63, 46--52 (2017; Zbl 1348.35012) Full Text: DOI arXiv
Yang, Xiao-Feng; Deng, Zi-Chen; Li, Qing-Jun; Wei, Yi Exact combined traveling wave solutions and multi-symplectic structure of the variant Boussinesq-Whitham-Broer-Kaup type equations. (English) Zbl 1470.35119 Commun. Nonlinear Sci. Numer. Simul. 36, 1-13 (2016). MSC: 35C07 35Q53 PDFBibTeX XMLCite \textit{X.-F. Yang} et al., Commun. Nonlinear Sci. Numer. Simul. 36, 1--13 (2016; Zbl 1470.35119) Full Text: DOI
Miah, Md. Mamun; Shahadat Ali, H. M.; Ali Akbar, M. An investigation of abundant traveling wave solutions of complex nonlinear evolution equations: the perturbed nonlinear Schrödinger equation and the cubic-quintic Ginzburg-Landau equation. (English) Zbl 1438.35396 Cogent Math. 3, Article ID 1277506, 19 p. (2016). MSC: 35Q55 35C07 35Q56 PDFBibTeX XMLCite \textit{Md. M. Miah} et al., Cogent Math. 3, Article ID 1277506, 19 p. (2016; Zbl 1438.35396) Full Text: DOI OA License
Sun, Cong; Ji, Shuguan New periodic solutions for a class of Zakharov equations. (English) Zbl 1361.35017 Adv. Math. Phys. 2016, Article ID 6219251, 6 p. (2016). MSC: 35B10 35G55 PDFBibTeX XMLCite \textit{C. Sun} and \textit{S. Ji}, Adv. Math. Phys. 2016, Article ID 6219251, 6 p. (2016; Zbl 1361.35017) Full Text: DOI OA License
Wei, Yi; He, Xin-Dang; Yang, Xiao-Feng The homogeneous balance of undetermined coefficients method and its application. (English) Zbl 1365.35145 Open Math. 14, 816-826 (2016). Reviewer: Ti-Jun Xiao (Fudan) MSC: 35Q53 35G25 PDFBibTeX XMLCite \textit{Y. Wei} et al., Open Math. 14, 816--826 (2016; Zbl 1365.35145) Full Text: DOI OA License
Yu, Jianping; Wang, Deng-Shan; Sun, Yongli; Wu, Suping Modified method of simplest equation for obtaining exact solutions of the Zakharov-Kuznetsov equation, the modified Zakharov-Kuznetsov equation, and their generalized forms. (English) Zbl 1349.35053 Nonlinear Dyn. 85, No. 4, 2449-2465 (2016). MSC: 35C07 35A24 PDFBibTeX XMLCite \textit{J. Yu} et al., Nonlinear Dyn. 85, No. 4, 2449--2465 (2016; Zbl 1349.35053) Full Text: DOI
Wang, Mingliang; Zhang, Jinliang; Li, Xiangzheng Decay mode solutions to cylindrical KP equation. (English) Zbl 1356.35211 Appl. Math. Lett. 62, 29-34 (2016). MSC: 35Q53 76B15 PDFBibTeX XMLCite \textit{M. Wang} et al., Appl. Math. Lett. 62, 29--34 (2016; Zbl 1356.35211) Full Text: DOI arXiv
Kaplan, Melike; Ünsal, Ömer; Bekir, Ahmet Exact solutions of nonlinear Schrödinger equation by using symbolic computation. (English) Zbl 1338.35095 Math. Methods Appl. Sci. 39, No. 8, 2093-2099 (2016). MSC: 35C07 35Q55 83C15 PDFBibTeX XMLCite \textit{M. Kaplan} et al., Math. Methods Appl. Sci. 39, No. 8, 2093--2099 (2016; Zbl 1338.35095) Full Text: DOI
Yuan, Wenjun; Meng, Fanning; Lin, Jianming; Wu, Yonghong All meromorphic solutions of an ordinary differential equation and its applications. (English) Zbl 1343.30018 Math. Methods Appl. Sci. 39, No. 8, 2083-2092 (2016). MSC: 30D30 34A05 PDFBibTeX XMLCite \textit{W. Yuan} et al., Math. Methods Appl. Sci. 39, No. 8, 2083--2092 (2016; Zbl 1343.30018) Full Text: DOI
Zayed, Elsayed M. E.; Amer, Yasser A. The first integral method and its application for deriving the exact solutions of a higher-order dispersive cubic-quintic nonlinear Schrödinger equation. (English) Zbl 1332.35344 Comput. Math. Model. 27, No. 1, 80-94 (2016). MSC: 35Q55 35L05 PDFBibTeX XMLCite \textit{E. M. E. Zayed} and \textit{Y. A. Amer}, Comput. Math. Model. 27, No. 1, 80--94 (2016; Zbl 1332.35344) Full Text: DOI
Tang, Yaning; Zai, Weijian New exact periodic solitary-wave solutions for the \((3+1)\)-dimensional generalized KP and BKP equations. (English) Zbl 1443.35142 Comput. Math. Appl. 70, No. 10, 2432-2441 (2015). MSC: 35Q53 35B10 35C08 37K40 PDFBibTeX XMLCite \textit{Y. Tang} and \textit{W. Zai}, Comput. Math. Appl. 70, No. 10, 2432--2441 (2015; Zbl 1443.35142) Full Text: DOI
Guo, Shimin; Mei, Liquan; Zhou, Yubin The compound \(\left(\frac{G'}{G}\right)\)-expansion method and double non-traveling wave solutions of \((2+1)\)-dimensional nonlinear partial differential equations. (English) Zbl 1443.35125 Comput. Math. Appl. 69, No. 8, 804-816 (2015). MSC: 35Q53 35C07 PDFBibTeX XMLCite \textit{S. Guo} et al., Comput. Math. Appl. 69, No. 8, 804--816 (2015; Zbl 1443.35125) Full Text: DOI
Yuan, Wenjun; Meng, Fanning; Huang, Yong; Wu, Yonghong All traveling wave exact solutions of the variant Boussinesq equations. (English) Zbl 1410.35192 Appl. Math. Comput. 268, 865-872 (2015). MSC: 35Q53 30D35 35C08 PDFBibTeX XMLCite \textit{W. Yuan} et al., Appl. Math. Comput. 268, 865--872 (2015; Zbl 1410.35192) Full Text: DOI
Alam, Md. Nur; Belgacem, Fethi Bin Muhammad Application of the novel \((G'/G)\)-expansion method to the regularized long wave equation. (English) Zbl 1431.37053 Waves Wavelets Fractals, Adv. Anal. 1, 51-67 (2015). MSC: 37K10 PDFBibTeX XMLCite \textit{Md. N. Alam} and \textit{F. B. M. Belgacem}, Waves Wavelets Fractals, Adv. Anal. 1, 51--67 (2015; Zbl 1431.37053) Full Text: DOI
Yang, Xiao-Feng; Deng, Zi-Chen; Wei, Yi A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. (English) Zbl 1422.35153 Adv. Difference Equ. 2015, Paper No. 117, 17 p. (2015). MSC: 35Q55 37K35 35G25 35C07 PDFBibTeX XMLCite \textit{X.-F. Yang} et al., Adv. Difference Equ. 2015, Paper No. 117, 17 p. (2015; Zbl 1422.35153) Full Text: DOI OA License
Nguyen, Lu Trong Khiem Modified homogeneous balance method: applications and new solutions. (English) Zbl 1352.35150 Chaos Solitons Fractals 73, 148-155 (2015). MSC: 35Q53 35C08 35A25 PDFBibTeX XMLCite \textit{L. T. K. Nguyen}, Chaos Solitons Fractals 73, 148--155 (2015; Zbl 1352.35150) Full Text: DOI
Guo, Peng; Wu, Xiang; Wang, Liang-bi Multiple soliton solutions for the variant Boussinesq equations. (English) Zbl 1351.35136 Adv. Difference Equ. 2015, Paper No. 37, 11 p. (2015). MSC: 35Q35 76B25 35C08 37K40 PDFBibTeX XMLCite \textit{P. Guo} et al., Adv. Difference Equ. 2015, Paper No. 37, 11 p. (2015; Zbl 1351.35136) Full Text: DOI OA License
Yang, Xiao-Feng; Deng, Zi-Chen; Li, Qing-Jun; Wei, Yi Exact solutions and multi-symplectic structure of the generalized KdV-type equation. (English) Zbl 1346.35190 Adv. Difference Equ. 2015, Paper No. 271, 15 p. (2015). MSC: 35Q55 35Q53 35G25 PDFBibTeX XMLCite \textit{X.-F. Yang} et al., Adv. Difference Equ. 2015, Paper No. 271, 15 p. (2015; Zbl 1346.35190) Full Text: DOI OA License
Gurefe, Y.; Misirli, E.; Pandir, Y.; Sonmezoglu, A.; Ekici, M. New exact solutions of the Davey-Stewartson equation with power-law nonlinearity. (English) Zbl 1320.35145 Bull. Malays. Math. Sci. Soc. (2) 38, No. 3, 1223-1234 (2015). MSC: 35C08 35G20 PDFBibTeX XMLCite \textit{Y. Gurefe} et al., Bull. Malays. Math. Sci. Soc. (2) 38, No. 3, 1223--1234 (2015; Zbl 1320.35145) Full Text: DOI
Demiray, Seçil; Ünsal, Ömer; Bekir, Ahmet Exact solutions of nonlinear wave equations using \((G^\prime/G, 1/G)\)-expansion method. (English) Zbl 1319.34008 J. Egypt. Math. Soc. 23, No. 1, 78-84 (2015). MSC: 34A05 35C07 34A25 35L05 PDFBibTeX XMLCite \textit{S. Demiray} et al., J. Egypt. Math. Soc. 23, No. 1, 78--84 (2015; Zbl 1319.34008) Full Text: DOI OA License
Liu, Chunping A new auto-Bäcklund transformation of the KdV equation with general variable coefficients and its application. (English) Zbl 1474.35564 Abstr. Appl. Anal. 2014, Article ID 591982, 5 p. (2014). MSC: 35Q53 35A30 37K10 PDFBibTeX XMLCite \textit{C. Liu}, Abstr. Appl. Anal. 2014, Article ID 591982, 5 p. (2014; Zbl 1474.35564) Full Text: DOI OA License
Matjila, Catherine; Muatjetjeja, Ben; Khalique, Chaudry Masood Exact solutions and conservation laws of the Drinfel’d-Sokolov-Wilson system. (English) Zbl 1472.35306 Abstr. Appl. Anal. 2014, Article ID 271960, 6 p. (2014). MSC: 35Q35 76B15 76B25 35A30 PDFBibTeX XMLCite \textit{C. Matjila} et al., Abstr. Appl. Anal. 2014, Article ID 271960, 6 p. (2014; Zbl 1472.35306) Full Text: DOI OA License
El Achab, Abdelfattah Elliptic travelling wave solutions to a generalized Boussinesq equation. (English) Zbl 1468.35168 Abstr. Appl. Anal. 2014, Article ID 256019, 7 p. (2014). MSC: 35Q53 35C07 PDFBibTeX XMLCite \textit{A. El Achab}, Abstr. Appl. Anal. 2014, Article ID 256019, 7 p. (2014; Zbl 1468.35168) Full Text: DOI OA License
Li, Shaolin; He, Yinghui; Long, Yao Joint application of bilinear operator and F-expansion method for (\(2 + 1\))-dimensional Kadomtsev-Petviashvili equation. (English) Zbl 1407.35043 Math. Probl. Eng. 2014, Article ID 156483, 5 p. (2014). MSC: 35C05 35Q53 37K10 PDFBibTeX XMLCite \textit{S. Li} et al., Math. Probl. Eng. 2014, Article ID 156483, 5 p. (2014; Zbl 1407.35043) Full Text: DOI
Zhang, Huiqun; Ma, Wen-Xiu Extended transformed rational function method and applications to complexiton solutions. (English) Zbl 1410.35024 Appl. Math. Comput. 230, 509-515 (2014). MSC: 35G20 35A25 35C05 35Q53 PDFBibTeX XMLCite \textit{H. Zhang} and \textit{W.-X. Ma}, Appl. Math. Comput. 230, 509--515 (2014; Zbl 1410.35024) Full Text: DOI
Yuan, Wenjun; Li, Yezhou; Qi, Jianming All meromorphic solutions of some algebraic differential equations and their applications. (English) Zbl 1351.34103 Adv. Difference Equ. 2014, Paper No. 105, 14 p. (2014). MSC: 34M05 30D35 34M15 34A05 PDFBibTeX XMLCite \textit{W. Yuan} et al., Adv. Difference Equ. 2014, Paper No. 105, 14 p. (2014; Zbl 1351.34103) Full Text: DOI OA License
Yuan, Wenjun; Huang, Zifeng; Fu, Maozhun; Lai, Jinchun The general solutions of an auxiliary ordinary differential equation using complex method and its applications. (English) Zbl 1343.30028 Adv. Difference Equ. 2014, Paper No. 147, 9 p. (2014). MSC: 30D35 34A05 PDFBibTeX XMLCite \textit{W. Yuan} et al., Adv. Difference Equ. 2014, Paper No. 147, 9 p. (2014; Zbl 1343.30028) Full Text: DOI OA License
Huang, Yong; Wu, Yonghong; Meng, Fanning; Yuan, Wenjun All exact traveling wave solutions of the combined KdV-mKdV equation. (English) Zbl 1346.35180 Adv. Difference Equ. 2014, Paper No. 261, 11 p. (2014). MSC: 35Q53 35C07 PDFBibTeX XMLCite \textit{Y. Huang} et al., Adv. Difference Equ. 2014, Paper No. 261, 11 p. (2014; Zbl 1346.35180) Full Text: DOI OA License
Yuan, Wenjun; Xiao, Bing; Wu, Yonghong; Qi, Jianming The general traveling wave solutions of the Fisher type equations and some related problems. (English) Zbl 1336.30048 J. Inequal. Appl. 2014, Paper No. 500, 15 p. (2014). MSC: 30D30 35Q53 37K10 PDFBibTeX XMLCite \textit{W. Yuan} et al., J. Inequal. Appl. 2014, Paper No. 500, 15 p. (2014; Zbl 1336.30048) Full Text: DOI
Khan, Kamruzzaman; Ali Akbar, M. Traveling wave solutions of nonlinear evolution equations via the enhanced \((G^{\prime}/G)\)-expansion method. (English) Zbl 1302.35089 J. Egypt. Math. Soc. 22, No. 2, 220-226 (2014). MSC: 35C07 35C08 35Q53 PDFBibTeX XMLCite \textit{K. Khan} and \textit{M. Ali Akbar}, J. Egypt. Math. Soc. 22, No. 2, 220--226 (2014; Zbl 1302.35089) Full Text: DOI OA License
Liu, Yanqin; Yan, Limei Solutions of fractional Konopelchenko-Dubrovsky and Nizhnik-Novikov-Veselov equations using a generalized fractional subequation method. (English) Zbl 1470.35401 Abstr. Appl. Anal. 2013, Article ID 839613, 7 p. (2013). MSC: 35R11 35C05 35Q53 PDFBibTeX XMLCite \textit{Y. Liu} and \textit{L. Yan}, Abstr. Appl. Anal. 2013, Article ID 839613, 7 p. (2013; Zbl 1470.35401) Full Text: DOI OA License
Ekici, Mehmet; Duran, Durgun; Sonmezoglu, Abdullah Soliton solutions of the Klein-Gordon-Zakharov equation with power law nonlinearity. (English) Zbl 1310.35066 ISRN Comput. Math. 2013, Article ID 716279, 7 p. (2013). MSC: 35C08 35C05 35A25 35A35 PDFBibTeX XMLCite \textit{M. Ekici} et al., ISRN Comput. Math. 2013, Article ID 716279, 7 p. (2013; Zbl 1310.35066) Full Text: DOI
Taha, Wafaa M.; Noorani, M. S. M. Exact solutions of equation generated by the Jaulent-Miodek hierarchy by \((G'/G)\)-expansion method. (English) Zbl 1296.35014 Math. Probl. Eng. 2013, Article ID 392830, 7 p. (2013). MSC: 35C05 35C08 35Q53 PDFBibTeX XMLCite \textit{W. M. Taha} and \textit{M. S. M. Noorani}, Math. Probl. Eng. 2013, Article ID 392830, 7 p. (2013; Zbl 1296.35014) Full Text: DOI
Wei, Long; Wang, Yang Infinitely many elliptic solutions to a simple equation and applications. (English) Zbl 1302.35113 Abstr. Appl. Anal. 2013, Article ID 582532, 9 p. (2013). Reviewer: Sergei V. Rogosin (Minsk) MSC: 35G20 33E05 35A24 PDFBibTeX XMLCite \textit{L. Wei} and \textit{Y. Wang}, Abstr. Appl. Anal. 2013, Article ID 582532, 9 p. (2013; Zbl 1302.35113) Full Text: DOI OA License