×

zbMATH — the first resource for mathematics

Bounds on the probability of radically different opinions. (English) Zbl 07204036
Summary: We establish bounds on the probability that two different agents, who share an initial opinion expressed as a probability distribution on an abstract probability space, given two different sources of information, may come to radically different opinions regarding the conditional probability of the same event.
MSC:
60E15 Inequalities; stochastic orderings
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Viktor Beneš and Josef Štěpán, Extremal solutions in the marginal problem, Advances in probability distributions with given marginals (Rome, 1990), Math. Appl., vol. 67, Kluwer Acad. Publ., Dordrecht, 1991, pp. 189-206. · Zbl 0738.60001
[2] Patrick Billingsley, Probability and measure, third ed., Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1995, A Wiley-Interscience Publication. · Zbl 0822.60002
[3] Krzysztof Burdzy, The search for certainty, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009, On the clash of science and philosophy of probability. · Zbl 1330.60003
[4] Krzysztof Burdzy, Resonance—from probability to epistemology and back, Imperial College Press, London, 2016. · Zbl 1338.60002
[5] Krzysztof Burdzy and Soumik Pal, Contradictory predictions, (2019), preprint, arXiv:1912.00126.
[6] R. Casarin, G. Mantoan, and F. Ravazzolo, Bayesian calibration of generalized pools of predictive distributions, Econometrics 4 (2016), no. 1.
[7] A. P. Dawid, M. H. DeGroot, and J. Mortera, Coherent combination of experts’ opinions, Test 4 (1995), no. 2, 263-313. · Zbl 0844.62002
[8] A. P. Dawid and J. Mortera, A note on prediction markets, Available at arxiv[math.ST] arXiv:1702.02502, 2018.
[9] M. H. DeGroot and J. Mortera, Optimal linear opinion pools, Management Science 37 (1991), no. 5, 546-558. · Zbl 0728.62008
[10] Morris H. DeGroot, A Bayesian view of assessing uncertainty and comparing expert opinion, J. Statist. Plann. Inference 20 (1988), no. 3, 295-306. · Zbl 0666.62003
[11] Lester E. Dubins, David Gilat, and Isaac Meilijson, On the expected diameter of an \(L_2\)-bounded martingale, Ann. Probab. 37 (2009), no. 1, 393-402. · Zbl 1159.60020
[12] Lester E. Dubins and Jim Pitman, A divergent, two-parameter, bounded martingale, Proc. Amer. Math. Soc. 78 (1980), no. 3, 414-416. · Zbl 0433.60045
[13] Lester E. Dubins and Jim Pitman, A maximal inequality for skew fields, Z. Wahrsch. Verw. Gebiete 52 (1980), no. 3, 219-227. · Zbl 0427.60053
[14] Kenny Easwaran, Luke Fenton-Glynn, Christopher Hitchcock, and Joel D. Velasco, Updating on the credences of others: Disagreement, agreement, and synergy, Philosophers’ Imprint 16 (2016), 1-39.
[15] Simon French, Aggregating expert judgement, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 105 (2011), no. 1, 181-206. · Zbl 1217.62004
[16] Christian Genest, A characterization theorem for externally Bayesian groups, Ann. Statist. 12 (1984), no. 3, 1100-1105. · Zbl 0541.62003
[17] Tilmann Gneiting and Roopesh Ranjan, Combining predictive distributions, Electron. J. Stat. 7 (2013), 1747-1782. · Zbl 1294.62220
[18] Sam Gutmann, J. H. B. Kemperman, J. A. Reeds, and L. A. Shepp, Existence of probability measures with given marginals, Ann. Probab. 19 (1991), no. 4, 1781-1797. · Zbl 0739.60001
[19] Pierre Henry-Labordère, Jan Obłój, Peter Spoida, and Nizar Touzi, The maximum maximum of a martingale with given \(n\) marginals, Ann. Appl. Probab. 26 (2016), no. 1, 1-44. · Zbl 1337.60078
[20] G. Kapetanios, J. Mitchell, S. Price, and N. Fawcett, Generalised density forecast combinations, J. Econometrics 188 (2015), no. 1, 150-165. · Zbl 1337.62292
[21] Younes Kchia and Philip Protter, Progressive filtration expansions via a process, with applications to insider trading, Int. J. Theor. Appl. Finance 18 (2015), no. 4, 1550027, 48. · Zbl 1344.60037
[22] Davar Khoshnevisan, Multiparameter processes, Springer Monographs in Mathematics, Springer-Verlag, New York, 2002, An introduction to random fields. · Zbl 1005.60005
[23] Fabian Krüger and Ingmar Nolte, Disagreement versus uncertainty: Evidence from distribution forecasts, Journal of Banking & Finance 72 (2016), S172-S186, IFABS 2014: Bank business models, regulation, and the role of financial market participants in the global financial crisis.
[24] Steffen L. Lauritzen, Rasch models with exchangeable rows and columns, Bayesian statistics, 7 (Tenerife, 2002), Oxford Univ. Press, New York, 2003, pp. 215-232.
[25] Jan Lorenz, Heiko Rauhut, Frank Schweitzer, and Dirk Helbing, How social influence can undermine the wisdom of crowd effect, Proceedings of the National Academy of Sciences 108 (2011), no. 22, 9020-9025.
[26] Annette Möller and Jörgen Groß, Probabilistic temperature forecasting based on an ensemble autoregressive modification, Quarterly Journal of the Royal Meteorological Society 142 (2016), no. 696, 1385-1394.
[27] Enrique Moral-Benito, Model averaging in economics: An overview, Journal of Economic Surveys 29 (2015), no. 1, 46-75.
[28] Adam Osȩkowski, Estimates for the diameter of a martingale, Stochastics 87 (2015), no. 2, 235-256. · Zbl 1326.60059
[29] Adam Osȩkowski, Method of moments and sharp inequalities for martingales, Inequalities and extremal problems in probability and statistics, Academic Press, London, 2017, pp. 1-27. · Zbl 0931.41017
[30] Jim Pitman, Bounds on the probability of radically different opinions, Unpublished, 2014.
[31] Roopesh Ranjan and Tilmann Gneiting, Combining probability forecasts, J. R. Stat. Soc. Ser. B Stat. Methodol. 72 (2010), no. 1, 71-91. · Zbl 1411.62270
[32] Ville A. Satopää, Robin Pemantle, and Lyle H. Ungar, Modeling probability forecasts via information diversity, J. Amer. Statist. Assoc. 111 (2016), no. 516, 1623-1633. · Zbl 1348.62017
[33] V. Strassen, The existence of probability measures with given marginals, Ann. Math. Statist. 36 (1965), 423-439. · Zbl 0135.18701
[34] James W. Taylor and Jooyoung Jeon, Probabilistic forecasting of wave height for offshore wind turbine maintenance, European J. Oper. Res. 267 (2018), no. 3, 877-890. · Zbl 1403.90275
[35] Cédric Villani, Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009, Old and new. · Zbl 1156.53003
[36] Theodore Zhu, On coherent distributions, (forthcoming), 2020.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.