×

zbMATH — the first resource for mathematics

Generalized Fibonacci-Pell hybrinomials. (English) Zbl 07243690
M. Özdemir [Adv. Appl. Clifford Algebr. 28, No. 1, Paper No. 11, 32 p. (2018; Zbl 1394.11024)] defined the set of hybrid numbers as a generalization of complex, hyperbolic and dual numbers.
The present authors introduce Fibonacci-Pell hybrinomials and investigate their basic properties. These hybrinomials are hybric type generalizations of Fibonacci-Pell polynomials.
MSC:
11B37 Recurrences
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
15A66 Clifford algebras, spinors
PDF BibTeX XML Cite
Full Text: Link
References:
[1] U. Bednarz, I. Włoch, M. Wołowiec-Musiał,Total graph interpretation of the numbers of the Fibonacci type, Journal of Applied Mathematics, Vol. 2015, Article ID 837917, 7 pages. · Zbl 1347.05058
[2] A. Boussayoud,On some identities and generating functions for Pell-Lucas numbers, Online Analytic Combinatorics Journal, 12 (2017), pp. 1-10. · Zbl 1358.05303
[3] A. Boussayoud, S. Boughaba,On some identities and symmetric functions for k-Pell sequences and Chebychev polynomials, Online Analytic Combinatorics Journal 14, (2019), pp. 1-13. · Zbl 1407.05240
[4] A. Boussayoud, M. Chelgham, S. Boughaba,On some identities and generating functions for Mersenne numbers and polynomials, Turkish Journal of Analysis and Number Theory, Vol. 6, No. 3 (2018), pp. 93-97.
[5] P. Catarino,On k-Pell hybrid numbers, Journal of Discrete Mathematical Sciences and Cryptography, 22(1) (2019), pp. 83-89.
[6] S. Falcon, A. Plaza,On the Fibonacci k-numbers, Chaos, Solitons & Fractals, 32(5) (2007), pp. 1615- 1624. · Zbl 1158.11306
[7] S. Falcon, A. Plaza,The k-Fibonacci sequence and the Pascal2-triangle, Chaos, Solitons & Fractals, 33(1) (2007), pp. 38-49. · Zbl 1152.11308
[8] C. Kızılate¸s,A new generalization of Fibonacci hybrid and Lucas hybrid numbers, Chaos, Solitons & Fractals, 130 (2020) 109449, https://doi.org/10.1016/j.chaos.2019.109449.
[9] T. Koshy,Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York-Toronto 2001. · Zbl 0984.11010
[10] M. Liana, A. Szynal-Liana, I. Włoch,On Pell hybrinomials, Miskolc Mathematical Notes, 20.2 (2019), pp. 1051-1062. · Zbl 1449.11032
[11] A. Nalli, P. Haukkanen,On generalized Fibonacci and Lucas polynomials, Chaos, Solitons & Fractals, 42(5) (2009), pp. 3179-3186. · Zbl 1198.11017
[12] M. Özdemir,Introduction to Hybrid Numbers, Advances in Applied Clifford Algebras, 28 (2018), https://doi.org/10.1007/s00006-018-0833-3. · Zbl 1394.11024
[13] M. Shafiq, H. M. Srivastava, N. Khan, Q. Z. Ahmad, M. Darus, S. Kiran,An upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with k-Fibonacci numbers, Symmetry, 12 (2020), Article ID 1043, pp. 1-17.
[14] A. Szynal-Liana,The Horadam hybrid numbers, Discussiones Mathematicae. General Algebra and Applications, 38, No. 1 (2018), pp. 91-98.
[15] A. Szynal-Liana, I. Włoch,Hypercomplex numbers of the Fibonacci type, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2019.
[16] A. Szynal-Liana, I. Włoch,Introduction to Fibonacci and Lucas hybrinomials, Complex Variables and Elliptic Equations, https://doi.org/10.1080/17476933.2019.1681416. · Zbl 1340.11019
[17] A. Szynal-Liana, I. Włoch,On generalized Mersenne hybrid numbers, Annales UMCS, sectio A, in press.
[18] A. Szynal-Liana, I. Włoch,On Jacobsthal and Jacobsthal-Lucas Hybrid Numbers, Annales Mathematicae Silesianae, 33 (2019), pp. 276-283.
[19] A. Szynal-Liana, I. Włoch,On Pell and Pell-Lucas Hybrid Numbers, Commentationes Mathematicae, Vol. 58, No 1-2 (2018), pp. 11-17.
[20] A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.