×

The impact of increased dispersal in response to disease control in patchy environments. (English) Zbl 1314.92161

Summary: This paper uses a mathematical framework to investigate the impact of increased movement in response to disturbance caused by disease control strategies. Implementation of invasive disease control strategies such as culling may cause species to disperse beyond their natural range, thus aiding the spread of infection to otherwise infection free areas. Both linear and non-linear dispersal functions are compared with constant per capita dispersal in a coupled two patch SI model. For highly virulent or infrequently transmitted pathogens, it is found that an increase of dispersal due to control requires a higher level of disease control than in the constant dispersal model. Patches which may be sources or reservoirs of infection are investigated and it is found that if dispersal increases in response to control, then all patches, reservoir or not, must be targeted. The single host two patch model is then extended to a two host wildlife/livestock system with one species ‘wildlife’ free to move between patches and the other ‘livestock’ confined. In the two host case, control of one species alone will only achieve successful pathogen exclusion if that species is a reservoir for infection.

MSC:

92D30 Epidemiology
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, R. M.; May, R. M., Population biology of infectious diseasespart i, Nature, 280, 5721, 361-367 (1979)
[3] Anderson, R. M.; Trewhella, W., Population dynamics of the badger (Meles meles) and the epidemiology of bovine tuberculosis (Mycobacterium bovis), Philos. Trans. R. Soc. London Ser. B Biol. Sci., 310, 1145, 327-381 (1985)
[4] Beale, C. M.; Monaghan, P., Human disturbancepeople as predation-free predators?, J. Appl. Ecol., 41, 2, 335-343 (2004)
[5] Begon, M.; Bennett, M.; Bowers, R. G.; French, N. P.; Hazel, S. M.; Turner, J., A clarification of transmission terms in host-microparasite models: numbers, densities and areas, Epidemiol. Infect., 129, 1, 147-153 (2002)
[6] Begon, M.; Bowers, R. G., Host-host-pathogen models and microbial pest controlthe effect of host self regulation, J. Theor. Biol., 169, 3, 275-287 (1994)
[7] Bowers, R. G.; Begon, M., A host-host-pathogen model with free-living infective stages, J. Theor. Biol., 148, 3, 305-329 (1991)
[8] Conner, M. M.; White, G. C.; Freddy, D. J., Elk movement in response to early-season hunting in northwest Colorado, J. Wildl. Manage., 65, 4, 926-940 (2001)
[9] Daszak, P.; Cunningham, A. A.; Hyatt, A. D., Emerging infectious diseases of wildlife—threats to biodiversity and human health, Science, 287, 5452, 443 (2000)
[12] Diekmann, O.; Heesterbeek, J. A.P.; Metz, J. A.J., On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 4, 365-382 (1990) · Zbl 0726.92018
[13] Ditchkoff, S. S.; Saalfeld, S. T.; Gibson, C. J., Animal behavior in urban ecosystemsmodifications due to human-induced stress, Urban Ecosyst., 9, 1, 5-12 (2006)
[14] Dobson, A., Population dynamics of pathogens with multiple host species, Am. Nat., 164, 5, 64 (2004)
[15] Dybiec, B.; Kleczkowski, A.; Gilligan, C. A., Optimising control of disease spread on networks, Acta Phys. Pol. B, 36, 5, 1509-1526 (2005)
[16] Farnsworth, M. L.; Wolfe, L. L.; Hobbs, N. T.; Burnham, K. P.; Williams, E. S.; Theobald, D. M.; Conner, M. M.; Miller, M. W., Human land use influences chronic wasting disease prevalence in mule deer, Ecol. Appl., 15, 1, 119-126 (2005)
[17] Garnett, B. T.; Delahay, R. J.; Roper, T. J., Ranging behaviour of European badgers (Meles meles) in relation to bovine tuberculosis (Mycobacterium bovis) infection, Appl. Anim. Behav. Sci., 94, 3-4, 331-340 (2005)
[18] Gill, J. A.; Norris, K.; Sutherland, W. J., Why behavioural responses may not reflect the population consequences of human disturbance, Biol. Conserv., 97, 2, 265-268 (2001)
[19] Gortázar, C.; Acevedo, P.; Ruiz-Fons, F.; Vicente, J., Disease risks and overabundance of game species, Eur. J. Wildl. Res., 52, 2, 81-87 (2006)
[20] Gortázar, C.; Ferroglio, E.; Höfle, U.; Frölich, K.; Vicente, J., Diseases shared between wildlife and livestocka European perspective, Eur. J. Wildl. Res., 53, 4, 241-256 (2007)
[21] Greenman, J. V.; Hoyle, A. S., Exclusion of generalist pathogens in multihost communities, Am. Nat., 172, 4, 576-584 (2008)
[22] Greenman, J. V.; Hoyle, A. S., Pathogen exclusion from eco-epidemiological systems, Am. Nat., 176, 2, 149-158 (2010)
[23] Greenman, J. V.; Hudson, P. J., Host exclusion and coexistence in apparent and direct competitionan application of bifurcation theory, Theor. Popul. Biol., 56, 1, 48-64 (1999) · Zbl 1115.92312
[24] Greenman, J. V.; Hudson, P. J., Multihost, multiparasite systemsan application of bifurcation theory, Math. Med. Biol., 16, 4, 333 (1999) · Zbl 0935.92031
[25] Haydon, D. T.; Cleaveland, S.; Taylor, L. H.; Laurenson, M. K., Identifying reservoirs of infectiona conceptual and practical challenge, Emerging Infect. Dis., 8, 12, 1468-1473 (2002)
[26] Hess, G., Disease in metapopulation modelsimplications for conservation, Ecology, 77, 5, 1617-1632 (1996)
[27] Jackson, J. B.C.; Kirby, M. X.; Berger, W. H.; Bjorndal, K. A.; Botsford, L. W.; Bourque, B. J.; Bradbury, R. H.; Cooke, R.; Erlandson, J.; Estes, J. A., Historical overfishing and the recent collapse of coastal ecosystems, Science, 293, 5530, 629-637 (2001)
[28] Keeling, M. J.; Rohani, P., Modeling Infectious Diseases in Humans and Animals (2008), Princeton University Press · Zbl 1279.92038
[30] McDonald, R. A.; Delahay, R. J.; Carter, S. P.; Smith, G. C.; Cheeseman, C. L., Perturbing implications of wildlife ecology for disease control, Trends Ecol. Evol., 23, 2, 53-56 (2008)
[31] Murray, J. D., Mathematical BiologyAn Introduction (2002), Springer
[32] Norman, R.; Bowers, R. G., A host-host-pathogen model with vaccination and its application to target and reservoir hosts, Math. Popul. Stud., 14, 1, 31-56 (2007) · Zbl 1109.92042
[33] O’Brien, D. J.; Schmitt, S. M.; Fitzgerald, S. D.; Berry, D. E.; Hickling, G. J., Managing the wildlife reservoir of Mycobacterium bovisthe Michigan, USA, experience, Vet. Microbiol., 112, 2-4, 313-323 (2006)
[34] Seneta, E., Non-Negative Matrices and Markov Chains (2006), Springer Verlag · Zbl 1099.60004
[35] Swinton, J.; Tuyttens, F.; Macdonald, D.; Nokes, D. J.; Cheeseman, C. L.; Clifton-Hadley, R., A comparison of fertility control and lethal control of bovine tuberculosis in badgersthe impact of perturbation induced transmission, Philos. Trans. R. Soc. London Ser. B Biol. Sci., 352, 1353, 619-631 (1997)
[36] Taylor, L. H.; Latham, S. M.; Woolhouse, M. E.J., Risk factors for human disease emergence, Philos. Trans. R. Soc. London Ser. B Biol. Sci., 356, 1411, 983-989 (2001)
[37] Tildesley, M. J.; House, T. A.; Bruhn, M. C.; Curry, R. J.; ONeil, M.; Allpress, J. L.E.; Smith, G.; Keeling, M. J., Impact of spatial clustering on disease transmission and optimal control, Proc. Natl. Acad. Sci., 107, 3, 1041 (2010)
[38] Tildesley, M. J.; Savill, N. J.; Shaw, D. J.; Deardon, R.; Brooks, S. P.; Woolhouse, M. E.J.; Grenfell, B. T.; Keeling, M. J., Optimal reactive vaccination strategies for a foot-and-mouth outbreak in the UK, Nature, 440, 7080, 83-86 (2006)
[39] Tuite, A. R.; Tien, J.; Eisenberg, M.; Earn, D. J.D.; Ma, J.; Fisman, D. N., Cholera epidemic in Haiti, 2010using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Intern. Med., 154, 9, 593 (2011)
[40] Van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 1, 29-48 (2002) · Zbl 1015.92036
[41] Wang, W.; Zhao, X. Q., An epidemic model in a patchy environment, Math. Biosci., 190, 1, 97-112 (2004) · Zbl 1048.92030
[43] Wobeser, G., Disease management strategies for wildlife, Rev. Sci. Tech., 21, 1, 159 (2002), (International Office of Epizootics)
[44] Woodroffe, R.; Donnelly, C. A.; Cox, D. R.; Gilks, P.; Jenkins, H. E.; Johnston, W. T.; Le Fevre, A. M.; Bourne, F. J.; Cheeseman, C. L.; Clifton-Hadley, R. S.; Gettinby, G.; Hewinson, R. G.; McInerney, J. P.; Mitchell, A. P.; Morrison, W. I.; Watkins, G. H., Bovine tuberculosis in cattle and badgers in localized culling areas, J. Wildl. Dis., 45, 1, 128 (2009)
[45] Woolhouse, M. E.J.; Taylor, L. H.; Haydon, D. T., Population biology of multihost pathogens, Science, 292, 5519, 1109 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.