Wang, Li; Yan, Ming Hessian informed mirror descent. (English) Zbl 07568982 J. Sci. Comput. 92, No. 3, Paper No. 90, 22 p. (2022). MSC: 35Kxx 90Cxx 65Kxx PDF BibTeX XML Cite \textit{L. Wang} and \textit{M. Yan}, J. Sci. Comput. 92, No. 3, Paper No. 90, 22 p. (2022; Zbl 07568982) Full Text: DOI OpenURL
Keita, Sana; Beljadid, Abdelaziz; Bourgault, Yves Mass-conservative and positivity preserving second-order semi-implicit methods for high-order parabolic equations. (English) Zbl 07512373 J. Comput. Phys. 440, Article ID 110427, 25 p. (2021). MSC: 35Kxx 65Mxx 35Qxx PDF BibTeX XML Cite \textit{S. Keita} et al., J. Comput. Phys. 440, Article ID 110427, 25 p. (2021; Zbl 07512373) Full Text: DOI OpenURL
Eyles, Joe; Nürnberg, Robert; Styles, Vanessa Finite-element approximation of a phase field model for tumour growth. (English) Zbl 07478508 Port. Math. (N.S.) 78, No. 3-4, 341-365 (2021). MSC: 65-XX 35K45 65M60 65M15 PDF BibTeX XML Cite \textit{J. Eyles} et al., Port. Math. (N.S.) 78, No. 3--4, 341--365 (2021; Zbl 07478508) Full Text: DOI arXiv OpenURL
Yan, Fengna; Xu, Yan Error analysis of an unconditionally energy stable local discontinuous Galerkin scheme for the Cahn-Hilliard equation with concentration-dependent mobility. (English) Zbl 1473.65155 Comput. Methods Appl. Math. 21, No. 3, 729-751 (2021). MSC: 65M15 65M12 65M60 35K55 PDF BibTeX XML Cite \textit{F. Yan} and \textit{Y. Xu}, Comput. Methods Appl. Math. 21, No. 3, 729--751 (2021; Zbl 1473.65155) Full Text: DOI OpenURL
Pesce, Catalina; Muench, Andreas How do degenerate mobilities determine singularity formation in Cahn-Hilliard equations? (English) Zbl 1471.35006 Multiscale Model. Simul. 19, No. 3, 1143-1166 (2021). MSC: 35A21 35B40 35G20 35K35 35K58 74N20 76M45 82C26 PDF BibTeX XML Cite \textit{C. Pesce} and \textit{A. Muench}, Multiscale Model. Simul. 19, No. 3, 1143--1166 (2021; Zbl 1471.35006) Full Text: DOI arXiv OpenURL
Miranville, Alain; Moroşanu, Costică A qualitative analysis of a nonlinear second-order anisotropic diffusion problem with non-homogeneous Cauchy-Stefan-Boltzmann boundary conditions. (English) Zbl 1470.35199 Appl. Math. Optim. 84, No. 1, 227-244 (2021). MSC: 35K59 35K20 35K61 35B45 35B65 PDF BibTeX XML Cite \textit{A. Miranville} and \textit{C. Moroşanu}, Appl. Math. Optim. 84, No. 1, 227--244 (2021; Zbl 1470.35199) Full Text: DOI OpenURL
Scarpa, Luca The stochastic Cahn-Hilliard equation with degenerate mobility and logarithmic potential. (English) Zbl 1467.35199 Nonlinearity 34, No. 6, 3813-3857 (2021). MSC: 35K35 35R60 60H15 80A22 PDF BibTeX XML Cite \textit{L. Scarpa}, Nonlinearity 34, No. 6, 3813--3857 (2021; Zbl 1467.35199) Full Text: DOI arXiv OpenURL
Cheng, Xinyu; Li, Dong; Promislow, Keith; Wetton, Brian Asymptotic behaviour of time stepping methods for phase field models. (English) Zbl 1468.35166 J. Sci. Comput. 86, No. 3, Paper No. 32, 34 p. (2021). MSC: 35Q53 35B40 65J08 65M06 PDF BibTeX XML Cite \textit{X. Cheng} et al., J. Sci. Comput. 86, No. 3, Paper No. 32, 34 p. (2021; Zbl 1468.35166) Full Text: DOI arXiv OpenURL
Liu, Hailiang; Yin, Peimeng Unconditionally energy stable discontinuous Galerkin schemes for the Cahn-Hilliard equation. (English) Zbl 1480.65264 J. Comput. Appl. Math. 390, Article ID 113375, 19 p. (2021). Reviewer: Mohammed Kaabar (Gelugor) MSC: 65M60 65M06 65N30 65N12 65N15 PDF BibTeX XML Cite \textit{H. Liu} and \textit{P. Yin}, J. Comput. Appl. Math. 390, Article ID 113375, 19 p. (2021; Zbl 1480.65264) Full Text: DOI arXiv OpenURL
Metzger, Stefan An efficient and convergent finite element scheme for Cahn-Hilliard equations with dynamic boundary conditions. (English) Zbl 1458.35345 SIAM J. Numer. Anal. 59, No. 1, 219-248 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 76T06 35G31 65M60 65M12 76-10 PDF BibTeX XML Cite \textit{S. Metzger}, SIAM J. Numer. Anal. 59, No. 1, 219--248 (2021; Zbl 1458.35345) Full Text: DOI arXiv OpenURL
Reuter, Balthasar; Hajduk, Hennes; Rupp, Andreas; Frank, Florian; Aizinger, Vadym; Knabner, Peter FESTUNG 1.0: overview, usage, and example applications of the MATLAB/GNU Octave toolbox for discontinuous Galerkin methods. (English) Zbl 1460.76635 Comput. Math. Appl. 81, 3-41 (2021). MSC: 76M10 76M20 76B10 PDF BibTeX XML Cite \textit{B. Reuter} et al., Comput. Math. Appl. 81, 3--41 (2021; Zbl 1460.76635) Full Text: DOI OpenURL
Jia, Hongen; Li, Yang; Feng, Guorui; Li, Kaitai An efficient two-grid method for the Cahn-Hilliard equation with the concentration-dependent mobility and the logarithmic Flory-Huggins bulk potential. (English) Zbl 1472.65121 Appl. Math. Comput. 387, Article ID 124548, 15 p. (2020). MSC: 65M60 65M12 65M22 65M55 PDF BibTeX XML Cite \textit{H. Jia} et al., Appl. Math. Comput. 387, Article ID 124548, 15 p. (2020; Zbl 1472.65121) Full Text: DOI OpenURL
Bian, Xingzhi; Luan, Liping Global solutions to a model with Dirichlet boundary conditions for interface motion by interface diffusion. (English) Zbl 1446.82059 J. Math. Phys. 61, No. 4, 041503, 20 p. (2020). MSC: 82C24 82C26 35K55 35K65 74A50 74B10 35G16 35D30 PDF BibTeX XML Cite \textit{X. Bian} and \textit{L. Luan}, J. Math. Phys. 61, No. 4, 041503, 20 p. (2020; Zbl 1446.82059) Full Text: DOI OpenURL
Shanthraj, P.; Liu, C.; Akbarian, A.; Svendsen, B.; Raabe, D. Multi-component chemo-mechanics based on transport relations for the chemical potential. (English) Zbl 1442.74072 Comput. Methods Appl. Mech. Eng. 365, Article ID 113029, 19 p. (2020). MSC: 74F25 74C05 74C10 PDF BibTeX XML Cite \textit{P. Shanthraj} et al., Comput. Methods Appl. Mech. Eng. 365, Article ID 113029, 19 p. (2020; Zbl 1442.74072) Full Text: DOI arXiv OpenURL
Frank, Florian; Rupp, Andreas; Kuzmin, Dmitri Bound-preserving flux limiting schemes for DG discretizations of conservation laws with applications to the Cahn-Hilliard equation. (English) Zbl 1441.76059 Comput. Methods Appl. Mech. Eng. 359, Article ID 112665, 25 p. (2020). MSC: 76M10 65M60 PDF BibTeX XML Cite \textit{F. Frank} et al., Comput. Methods Appl. Mech. Eng. 359, Article ID 112665, 25 p. (2020; Zbl 1441.76059) Full Text: DOI OpenURL
Segatti, Antonio; Vázquez, Juan Luis On a fractional thin film equation. (English) Zbl 1437.35429 Adv. Nonlinear Anal. 9, 1516-1558 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35K55 35R11 35C06 35D30 35Q35 PDF BibTeX XML Cite \textit{A. Segatti} and \textit{J. L. Vázquez}, Adv. Nonlinear Anal. 9, 1516--1558 (2020; Zbl 1437.35429) Full Text: DOI arXiv OpenURL
Zhang, Ruochun; Qian, Xiaoping Triangulation-based isogeometric analysis of the Cahn-Hilliard phase-field model. (English) Zbl 1442.65012 Comput. Methods Appl. Mech. Eng. 357, Article ID 112569, 30 p. (2019). MSC: 65D07 65L60 PDF BibTeX XML Cite \textit{R. Zhang} and \textit{X. Qian}, Comput. Methods Appl. Mech. Eng. 357, Article ID 112569, 30 p. (2019; Zbl 1442.65012) Full Text: DOI OpenURL
Zimmermann, Christopher; Toshniwal, Deepesh; Landis, Chad M.; Hughes, Thomas J. R.; Mandadapu, Kranthi K.; Sauer, Roger A. An isogeometric finite element formulation for phase transitions on deforming surfaces. (English) Zbl 1441.74286 Comput. Methods Appl. Mech. Eng. 351, 441-477 (2019). MSC: 74S05 65M60 65D07 74N15 PDF BibTeX XML Cite \textit{C. Zimmermann} et al., Comput. Methods Appl. Mech. Eng. 351, 441--477 (2019; Zbl 1441.74286) Full Text: DOI arXiv OpenURL
Liu, Yingjie; Peco, Christian; Dolbow, John A fully coupled mixed finite element method for surfactants spreading on thin liquid films. (English) Zbl 1440.76010 Comput. Methods Appl. Mech. Eng. 345, 429-453 (2019). MSC: 76A20 76M10 65N30 PDF BibTeX XML Cite \textit{Y. Liu} et al., Comput. Methods Appl. Mech. Eng. 345, 429--453 (2019; Zbl 1440.76010) Full Text: DOI OpenURL
Khodadadian, Amirreza; Parvizi, Maryam; Abbaszadeh, Mostafa; Dehghan, Mehdi; Heitzinger, Clemens A multilevel Monte Carlo finite element method for the stochastic Cahn-Hilliard-Cook equation. (English) Zbl 1465.76076 Comput. Mech. 64, No. 4, 937-949 (2019). MSC: 76M35 76M10 76T99 PDF BibTeX XML Cite \textit{A. Khodadadian} et al., Comput. Mech. 64, No. 4, 937--949 (2019; Zbl 1465.76076) Full Text: DOI OpenURL
Cheng, Kelong; Feng, Wenqiang; Wang, Cheng; Wise, Steven M. An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation. (English) Zbl 1416.65256 J. Comput. Appl. Math. 362, 574-595 (2019). MSC: 65M06 35K35 35K55 65K10 65M12 PDF BibTeX XML Cite \textit{K. Cheng} et al., J. Comput. Appl. Math. 362, 574--595 (2019; Zbl 1416.65256) Full Text: DOI arXiv OpenURL
Agosti, Abramo Discontinuous Galerkin finite element discretization of a degenerate Cahn-Hilliard equation with a single-well potential. (English) Zbl 1420.35429 Calcolo 56, No. 2, Paper No. 14, 47 p. (2019). MSC: 35Q92 65M60 35Q99 35K25 35K65 65K10 65G99 35D30 92C37 65M06 65M12 PDF BibTeX XML Cite \textit{A. Agosti}, Calcolo 56, No. 2, Paper No. 14, 47 p. (2019; Zbl 1420.35429) Full Text: DOI OpenURL
Cancès, Clément; Matthes, Daniel; Nabet, Flore A two-phase two-fluxes degenerate Cahn-Hilliard model as constrained Wasserstein gradient flow. (English) Zbl 1459.76171 Arch. Ration. Mech. Anal. 233, No. 2, 837-866 (2019). MSC: 76T99 35Q35 PDF BibTeX XML Cite \textit{C. Cancès} et al., Arch. Ration. Mech. Anal. 233, No. 2, 837--866 (2019; Zbl 1459.76171) Full Text: DOI arXiv OpenURL
Wang, Junping; Zhai, Qilong; Zhang, Ran; Zhang, Shangyou A weak Galerkin finite element scheme for the Cahn-Hilliard equation. (English) Zbl 1420.65128 Math. Comput. 88, No. 315, 211-235 (2019). Reviewer: Philipp Dörsek (London) MSC: 65N30 65N15 65N12 74N20 35Q35 PDF BibTeX XML Cite \textit{J. Wang} et al., Math. Comput. 88, No. 315, 211--235 (2019; Zbl 1420.65128) Full Text: DOI OpenURL
Frank, Florian; Liu, Chen; Alpak, Faruk O.; Riviere, Beatrice A finite volume/discontinuous Galerkin method for the advective Cahn-Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging. (English) Zbl 1405.65104 Comput. Geosci. 22, No. 2, 543-563 (2018). MSC: 65M08 76S05 PDF BibTeX XML Cite \textit{F. Frank} et al., Comput. Geosci. 22, No. 2, 543--563 (2018; Zbl 1405.65104) Full Text: DOI arXiv OpenURL
Fabrizio, Mauro; Franchi, Franca; Lazzari, Barbara; Nibbi, Roberta A non-isothermal compressible Cahn-Hilliard fluid model for air pollution phenomena. (English) Zbl 1404.76226 Physica D 378-379, 46-53 (2018). MSC: 76N15 80A17 86A10 PDF BibTeX XML Cite \textit{M. Fabrizio} et al., Physica D 378--379, 46--53 (2018; Zbl 1404.76226) Full Text: DOI OpenURL
Wang, Lin; Yu, Haijun On efficient second order stabilized semi-implicit schemes for the Cahn-Hilliard phase-field equation. (English) Zbl 1407.65163 J. Sci. Comput. 77, No. 2, 1185-1209 (2018). MSC: 65M12 65M15 65M60 65P40 65L06 35B50 35Q35 PDF BibTeX XML Cite \textit{L. Wang} and \textit{H. Yu}, J. Sci. Comput. 77, No. 2, 1185--1209 (2018; Zbl 1407.65163) Full Text: DOI arXiv OpenURL
Agosti, A. Error analysis of a finite element approximation of a degenerate Cahn-Hilliard equation. (English) Zbl 1405.35221 ESAIM, Math. Model. Numer. Anal. 52, No. 3, 827-867 (2018). MSC: 35Q92 35K35 35K65 65M60 65K10 65G99 92C37 PDF BibTeX XML Cite \textit{A. Agosti}, ESAIM, Math. Model. Numer. Anal. 52, No. 3, 827--867 (2018; Zbl 1405.35221) Full Text: DOI OpenURL
Dedè, Luca; Quarteroni, Alfio Isogeometric analysis of a phase field model for Darcy flows with discontinuous data. (English) Zbl 1397.65116 Chin. Ann. Math., Ser. B 39, No. 3, 487-512 (2018). MSC: 65L60 74S05 80A22 PDF BibTeX XML Cite \textit{L. Dedè} and \textit{A. Quarteroni}, Chin. Ann. Math., Ser. B 39, No. 3, 487--512 (2018; Zbl 1397.65116) Full Text: DOI OpenURL
Karasözen, Bülent; Uzunca, Murat; Sariaydin-Filibelioğlu, Ayşe; Yücel, Hamdullah Energy stable discontinuous Galerkin finite element method for the Allen-Cahn equation. (English) Zbl 1404.65173 Int. J. Comput. Methods 15, No. 3, Article ID 1850013, 26 p. (2018). MSC: 65M60 65M12 65M50 PDF BibTeX XML Cite \textit{B. Karasözen} et al., Int. J. Comput. Methods 15, No. 3, Article ID 1850013, 26 p. (2018; Zbl 1404.65173) Full Text: DOI arXiv OpenURL
Miranville, Alain The Cahn-Hilliard equation and some of its variants. (English) Zbl 1425.35086 AIMS Math. 2, No. 3, 479-544 (2017). MSC: 35K55 35B45 PDF BibTeX XML Cite \textit{A. Miranville}, AIMS Math. 2, No. 3, 479--544 (2017; Zbl 1425.35086) Full Text: DOI OpenURL
Sarıaydın-Filibelioğlu, Ayşe; Karasözen, Bülent; Uzunca, Murat Energy stable interior penalty discontinuous Galerkin finite element method for Cahn-Hilliard equation. (English) Zbl 1401.82026 Int. J. Nonlinear Sci. Numer. Simul. 18, No. 5, 303-314 (2017). MSC: 82C26 65M60 82C80 35K51 PDF BibTeX XML Cite \textit{A. Sarıaydın-Filibelioğlu} et al., Int. J. Nonlinear Sci. Numer. Simul. 18, No. 5, 303--314 (2017; Zbl 1401.82026) Full Text: DOI arXiv OpenURL
Jaensson, N. O.; Hulsen, M. A.; Anderson, P. D. On the use of a diffuse-interface model for the simulation of rigid particles in two-phase Newtonian and viscoelastic fluids. (English) Zbl 1390.76323 Comput. Fluids 156, 81-96 (2017). MSC: 76M10 65M60 76A10 76T20 PDF BibTeX XML Cite \textit{N. O. Jaensson} et al., Comput. Fluids 156, 81--96 (2017; Zbl 1390.76323) Full Text: DOI Link OpenURL
Repossi, Elisabetta; Rosso, Riccardo; Verani, Marco A phase-field model for liquid-gas mixtures: mathematical modelling and discontinuous Galerkin discretization. (English) Zbl 1404.65276 Calcolo 54, No. 4, 1339-1377 (2017). MSC: 65N30 35Q30 76N99 35Q35 65M06 76T10 PDF BibTeX XML Cite \textit{E. Repossi} et al., Calcolo 54, No. 4, 1339--1377 (2017; Zbl 1404.65276) Full Text: DOI OpenURL
Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan A parametric finite element method for solid-state dewetting problems with anisotropic surface energies. (English) Zbl 1378.76043 J. Comput. Phys. 330, 380-400 (2017). MSC: 76M10 76A20 PDF BibTeX XML Cite \textit{W. Bao} et al., J. Comput. Phys. 330, 380--400 (2017; Zbl 1378.76043) Full Text: DOI arXiv OpenURL
Nürnberg, Robert; Tucker, Edward J. W. Stable finite element approximation of a Cahn-Hilliard-Stokes system coupled to an electric field. (English) Zbl 1386.82047 Eur. J. Appl. Math. 28, No. 3, 470-498 (2017). MSC: 82C26 PDF BibTeX XML Cite \textit{R. Nürnberg} and \textit{E. J. W. Tucker}, Eur. J. Appl. Math. 28, No. 3, 470--498 (2017; Zbl 1386.82047) Full Text: DOI OpenURL
Dai, Shibin; Du, Qiang Computational studies of coarsening rates for the Cahn-Hilliard equation with phase-dependent diffusion mobility. (English) Zbl 1349.80043 J. Comput. Phys. 310, 85-108 (2016). MSC: 80M22 65M70 80A22 PDF BibTeX XML Cite \textit{S. Dai} and \textit{Q. Du}, J. Comput. Phys. 310, 85--108 (2016; Zbl 1349.80043) Full Text: DOI OpenURL
Kästner, Markus; Metsch, Philipp; de Borst, René Isogeometric analysis of the Cahn-Hilliard equation – a convergence study. (English) Zbl 1349.65453 J. Comput. Phys. 305, 360-371 (2016). MSC: 65M60 65D17 65M12 80A22 80M10 82C26 82C80 PDF BibTeX XML Cite \textit{M. Kästner} et al., J. Comput. Phys. 305, 360--371 (2016; Zbl 1349.65453) Full Text: DOI OpenURL
Zheng, Bin; Chen, Luoping; Hu, Xiaozhe; Chen, Long; Nochetto, Ricardo H.; Xu, Jinchao Fast multilevel solvers for a class of discrete fourth order parabolic problems. (English) Zbl 1410.65386 J. Sci. Comput. 69, No. 1, 201-226 (2016). Reviewer: Zhiming Chen (Beijing) MSC: 65M60 65F10 65F08 PDF BibTeX XML Cite \textit{B. Zheng} et al., J. Sci. Comput. 69, No. 1, 201--226 (2016; Zbl 1410.65386) Full Text: DOI arXiv OpenURL
Lee, Alpha Albert; Münch, Andreas; Süli, Endre Sharp-interface limits of the Cahn-Hilliard equation with degenerate mobility. (English) Zbl 1343.35129 SIAM J. Appl. Math. 76, No. 2, 433-456 (2016). MSC: 35K35 35Q35 35B40 74N20 76M45 76E17 82C26 PDF BibTeX XML Cite \textit{A. A. Lee} et al., SIAM J. Appl. Math. 76, No. 2, 433--456 (2016; Zbl 1343.35129) Full Text: DOI arXiv Link OpenURL
Guo, Ruihan; Xu, Yan An efficient, unconditionally energy stable local discontinuous Galerkin scheme for the Cahn-Hilliard-Brinkman system. (English) Zbl 1349.65452 J. Comput. Phys. 298, 387-405 (2015). MSC: 65M60 65M12 65M55 PDF BibTeX XML Cite \textit{R. Guo} and \textit{Y. Xu}, J. Comput. Phys. 298, 387--405 (2015; Zbl 1349.65452) Full Text: DOI OpenURL
Han, Daozhi; Wang, Xiaoming A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation. (English) Zbl 1349.76213 J. Comput. Phys. 290, 139-156 (2015). MSC: 76M10 65M60 76D05 82C26 PDF BibTeX XML Cite \textit{D. Han} and \textit{X. Wang}, J. Comput. Phys. 290, 139--156 (2015; Zbl 1349.76213) Full Text: DOI arXiv OpenURL
Tierra, G.; Guillén-González, F. Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models. (English) Zbl 1348.82080 Arch. Comput. Methods Eng. 22, No. 2, 269-289 (2015). MSC: 82C80 82C26 65M60 PDF BibTeX XML Cite \textit{G. Tierra} and \textit{F. Guillén-González}, Arch. Comput. Methods Eng. 22, No. 2, 269--289 (2015; Zbl 1348.82080) Full Text: DOI OpenURL
Nürnberg, Robert; Tucker, Edward J. W. Finite element approximation of a phase field model arising in nanostructure patterning. (English) Zbl 1339.65179 Numer. Methods Partial Differ. Equations 31, No. 6, 1890-1924 (2015). Reviewer: Sarangam Majumdar (Hamburg) MSC: 65M60 35Q70 35Q35 35Q60 65M12 PDF BibTeX XML Cite \textit{R. Nürnberg} and \textit{E. J. W. Tucker}, Numer. Methods Partial Differ. Equations 31, No. 6, 1890--1924 (2015; Zbl 1339.65179) Full Text: DOI Link OpenURL
Cârjă, Ovidiu; Miranville, Alain; Moroşanu, Costică On the existence, uniqueness and regularity of solutions to the phase-field system with a general regular potential and a general class of nonlinear and non-homogeneous boundary conditions. (English) Zbl 1304.35167 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 113, Part A, 190-208 (2015). MSC: 35B65 35K61 35Q56 47H30 74A15 80A22 PDF BibTeX XML Cite \textit{O. Cârjă} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 113, 190--208 (2015; Zbl 1304.35167) Full Text: DOI OpenURL
Guillén-González, Francisco; Tierra, Giordano Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models. (English) Zbl 1362.65104 Comput. Math. Appl. 68, No. 8, 821-846 (2014). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{F. Guillén-González} and \textit{G. Tierra}, Comput. Math. Appl. 68, No. 8, 821--846 (2014; Zbl 1362.65104) Full Text: DOI OpenURL
Guan, Zhen; Lowengrub, John S.; Wang, Cheng; Wise, Steven M. Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations. (English) Zbl 1349.65298 J. Comput. Phys. 277, 48-71 (2014). MSC: 65M06 35B10 35R09 65R20 45K05 65M12 PDF BibTeX XML Cite \textit{Z. Guan} et al., J. Comput. Phys. 277, 48--71 (2014; Zbl 1349.65298) Full Text: DOI OpenURL
Guo, Ruihan; Xia, Yinhua; Xu, Yan An efficient fully-discrete local discontinuous Galerkin method for the Cahn-Hilliard-Hele-Shaw system. (English) Zbl 1349.76211 J. Comput. Phys. 264, 23-40 (2014). MSC: 76M10 65M60 65M12 76D27 PDF BibTeX XML Cite \textit{R. Guo} et al., J. Comput. Phys. 264, 23--40 (2014; Zbl 1349.76211) Full Text: DOI OpenURL
Bosch, Jessica; Stoll, Martin; Benner, Peter Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements. (English) Zbl 1349.65438 J. Comput. Phys. 262, 38-57 (2014). MSC: 65M60 65K15 35K86 PDF BibTeX XML Cite \textit{J. Bosch} et al., J. Comput. Phys. 262, 38--57 (2014; Zbl 1349.65438) Full Text: DOI OpenURL
Dai, Shibin; Du, Qiang Coarsening mechanism for systems governed by the Cahn-Hilliard equation with degenerate diffusion mobility. (English) Zbl 1327.35150 Multiscale Model. Simul. 12, No. 4, 1870-1889 (2014). MSC: 35K35 35B40 74N20 82C26 PDF BibTeX XML Cite \textit{S. Dai} and \textit{Q. Du}, Multiscale Model. Simul. 12, No. 4, 1870--1889 (2014; Zbl 1327.35150) Full Text: DOI OpenURL
Liu, Fengnan; Zhao, Xiaopeng; Liu, Bo Finite element analysis of a nonlinear parabolic equation modeling epitaxial thin-film growth. (English) Zbl 1305.65207 Bound. Value Probl. 2014, Paper No. 46, 13 p. (2014). MSC: 65M60 35K55 65M15 82D25 PDF BibTeX XML Cite \textit{F. Liu} et al., Bound. Value Probl. 2014, Paper No. 46, 13 p. (2014; Zbl 1305.65207) Full Text: DOI OpenURL
Guo, Ruihan; Xu, Yan Efficient solvers of discontinuous Galerkin discretization for the Cahn-Hilliard equations. (English) Zbl 1296.65134 J. Sci. Comput. 58, No. 2, 380-408 (2014). MSC: 65M60 35K55 PDF BibTeX XML Cite \textit{R. Guo} and \textit{Y. Xu}, J. Sci. Comput. 58, No. 2, 380--408 (2014; Zbl 1296.65134) Full Text: DOI OpenURL
Liu, Ju; Dedè, Luca; Evans, John A.; Borden, Micheal J.; Hughes, Thomas J. R. Isogeometric analysis of the advective Cahn-Hilliard equation: spinodal decomposition under shear flow. (English) Zbl 1311.76069 J. Comput. Phys. 242, 321-350 (2013). MSC: 76M10 65M60 76F10 76T99 PDF BibTeX XML Cite \textit{J. Liu} et al., J. Comput. Phys. 242, 321--350 (2013; Zbl 1311.76069) Full Text: DOI OpenURL
Hintermüller, M.; Hinze, M.; Kahle, C. An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system. (English) Zbl 1291.65300 J. Comput. Phys. 235, 810-827 (2013). MSC: 65M60 76M10 35Q35 65M15 35A01 76T99 PDF BibTeX XML Cite \textit{M. Hintermüller} et al., J. Comput. Phys. 235, 810--827 (2013; Zbl 1291.65300) Full Text: DOI OpenURL
Barrett, John. W.; Garcke, Harald; Nürnberg, Robert On the stable discretization of strongly anisotropic phase field models with applications to crystal growth. (English) Zbl 1427.74161 ZAMM, Z. Angew. Math. Mech. 93, No. 10-11, 719-732 (2013). MSC: 74S05 74E15 65M12 PDF BibTeX XML Cite \textit{John. W. Barrett} et al., ZAMM, Z. Angew. Math. Mech. 93, No. 10--11, 719--732 (2013; Zbl 1427.74161) Full Text: DOI arXiv OpenURL
Moroşanu, Costică The phase-field transition system with non-homogeneous Cauchy-Stefan-Boltzmann and homogeneous Neumann boundary conditions and non-constant thermal conductivity. (English) Zbl 1325.35090 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 87, 22-32 (2013). Reviewer: Josipa Pina Milišić (Zagreb) MSC: 35K55 35K61 35Q79 82C26 PDF BibTeX XML Cite \textit{C. Moroşanu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 87, 22--32 (2013; Zbl 1325.35090) Full Text: DOI OpenURL
Schimperna, Giulio; Zelik, Sergey Existence of solutions and separation from singularities for a class of fourth order degenerate parabolic equations. (English) Zbl 1278.35052 Trans. Am. Math. Soc. 365, No. 7, 3799-3829 (2013). Reviewer: Josipa Pina Milisic (Zagreb) MSC: 35D30 35K35 35K65 37L30 35B40 35B41 PDF BibTeX XML Cite \textit{G. Schimperna} and \textit{S. Zelik}, Trans. Am. Math. Soc. 365, No. 7, 3799--3829 (2013; Zbl 1278.35052) Full Text: DOI arXiv OpenURL
Goudenège, Ludovic; Martin, Daniel; Vial, Grégory High order finite element calculations for the Cahn-Hilliard equation. (English) Zbl 1257.82004 J. Sci. Comput. 52, No. 2, 294-321 (2012). MSC: 82-08 82C80 65M60 35Q82 PDF BibTeX XML Cite \textit{L. Goudenège} et al., J. Sci. Comput. 52, No. 2, 294--321 (2012; Zbl 1257.82004) Full Text: DOI arXiv OpenURL
Chai, Shimin; Zou, Yongkui The spectral method for the Cahn-Hilliard equation with concentration-dependent mobility. (English) Zbl 1255.35208 J. Appl. Math. 2012, Article ID 808216, 35 p. (2012). MSC: 35Q82 65M70 65M15 PDF BibTeX XML Cite \textit{S. Chai} and \textit{Y. Zou}, J. Appl. Math. 2012, Article ID 808216, 35 p. (2012; Zbl 1255.35208) Full Text: DOI OpenURL
Wang, Quan-Fang Optimal distributed control of nonlinear Cahn-Hilliard systems with computational realization. (English. Russian original) Zbl 1290.49064 J. Math. Sci., New York 177, No. 3, 440-458 (2011); translation from Sovrem. Mat. Prilozh. 70 (2011). MSC: 49M30 PDF BibTeX XML Cite \textit{Q.-F. Wang}, J. Math. Sci., New York 177, No. 3, 440--458 (2011; Zbl 1290.49064); translation from Sovrem. Mat. Prilozh. 70 (2011) Full Text: DOI OpenURL
Shin, Jaemin; Jeong, Darae; Kim, Junseok A conservative numerical method for the Cahn-Hilliard equation in complex domains. (English) Zbl 1408.65056 J. Comput. Phys. 230, No. 19, 7441-7455 (2011). MSC: 65M06 65M55 76M20 PDF BibTeX XML Cite \textit{J. Shin} et al., J. Comput. Phys. 230, No. 19, 7441--7455 (2011; Zbl 1408.65056) Full Text: DOI OpenURL
Cherfils, Laurence; Miranville, Alain; Zelik, Sergey The Cahn-Hilliard equation with logarithmic potentials. (English) Zbl 1250.35129 Milan J. Math. 79, No. 2, 561-596 (2011). Reviewer: Athanasios Yannacopoulos (Athens) MSC: 35K67 35K55 35J60 80A22 35B40 35K35 35B41 PDF BibTeX XML Cite \textit{L. Cherfils} et al., Milan J. Math. 79, No. 2, 561--596 (2011; Zbl 1250.35129) Full Text: DOI OpenURL
Blank, Luise; Butz, Martin; Garcke, Harald Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method. (English) Zbl 1233.35132 ESAIM, Control Optim. Calc. Var. 17, No. 4, 931-954 (2011). MSC: 35K85 35K55 90C33 49N90 80A22 82C26 65M60 35K35 35A35 PDF BibTeX XML Cite \textit{L. Blank} et al., ESAIM, Control Optim. Calc. Var. 17, No. 4, 931--954 (2011; Zbl 1233.35132) Full Text: DOI EuDML OpenURL
Bartels, Sören; Müller, Rüdiger Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential. (English) Zbl 1241.65075 Numer. Math. 119, No. 3, 409-435 (2011). Reviewer: Weiying Zheng (Beijing) MSC: 65M15 65M60 35Q35 PDF BibTeX XML Cite \textit{S. Bartels} and \textit{R. Müller}, Numer. Math. 119, No. 3, 409--435 (2011; Zbl 1241.65075) Full Text: DOI OpenURL
Hintermüller, M.; Hinze, M.; Tber, M. H. An adaptive finite-element Moreau-Yosida-based solver for a non-smooth Cahn-Hilliard problem. (English) Zbl 1366.74070 Optim. Methods Softw. 26, No. 4-5, 777-811 (2011). MSC: 74S05 74N20 74M05 PDF BibTeX XML Cite \textit{M. Hintermüller} et al., Optim. Methods Softw. 26, No. 4--5, 777--811 (2011; Zbl 1366.74070) Full Text: DOI OpenURL
Rajagopal, Amirtham; Fischer, Paul; Kuhl, Ellen; Steinmann, Paul Natural element analysis of the Cahn-Hilliard phase-field model. (English) Zbl 1398.74059 Comput. Mech. 46, No. 3, 471-493 (2010). MSC: 74E30 65M12 74S30 74S05 65M06 65M60 PDF BibTeX XML Cite \textit{A. Rajagopal} et al., Comput. Mech. 46, No. 3, 471--493 (2010; Zbl 1398.74059) Full Text: DOI OpenURL
Moreo, P.; Gaffney, E. A.; García-Aznar, J. M.; Doblaré, M. On the modelling of biological patterns with mechanochemical models: insights from analysis and computation. (English) Zbl 1185.92011 Bull. Math. Biol. 72, No. 2, 400-431 (2010). MSC: 92C15 92C37 35Q92 65C20 92C05 65M60 65N30 PDF BibTeX XML Cite \textit{P. Moreo} et al., Bull. Math. Biol. 72, No. 2, 400--431 (2010; Zbl 1185.92011) Full Text: DOI OpenURL
Baňas, Ľubomír; Nürnberg, Robert Phase field computations for surface diffusion and void electromigration in \({\mathbb{R}^3}\). (English) Zbl 1259.78038 Comput. Vis. Sci. 12, No. 7, 319-327 (2009). MSC: 78M10 65M60 35K55 65H10 PDF BibTeX XML Cite \textit{Ľ. Baňas} and \textit{R. Nürnberg}, Comput. Vis. Sci. 12, No. 7, 319--327 (2009; Zbl 1259.78038) Full Text: DOI OpenURL
Baňas, Ľubomír; Nürnberg, Robert A multigrid method for the Cahn-Hilliard equation with obstacle potential. (English) Zbl 1168.65386 Appl. Math. Comput. 213, No. 2, 290-303 (2009). MSC: 65M55 65M60 35Q53 65M12 PDF BibTeX XML Cite \textit{Ľ. Baňas} and \textit{R. Nürnberg}, Appl. Math. Comput. 213, No. 2, 290--303 (2009; Zbl 1168.65386) Full Text: DOI OpenURL
Baňas, Ľubomír; Nürnberg, Robert Finite element approximation of a three dimensional phase field model for void electromigration. (English) Zbl 1203.65175 J. Sci. Comput. 37, No. 2, 202-232 (2008). MSC: 65M60 78M10 80A22 PDF BibTeX XML Cite \textit{Ľ. Baňas} and \textit{R. Nürnberg}, J. Sci. Comput. 37, No. 2, 202--232 (2008; Zbl 1203.65175) Full Text: DOI Link OpenURL
Gómez, Héctor; Calo, Victor M.; Bazilevs, Yuri; Hughes, Thomas J. R. Isogeometric analysis of the Cahn-Hilliard phase-field model. (English) Zbl 1194.74524 Comput. Methods Appl. Mech. Eng. 197, No. 49-50, 4333-4352 (2008). MSC: 74S30 74N20 PDF BibTeX XML Cite \textit{H. Gómez} et al., Comput. Methods Appl. Mech. Eng. 197, No. 49--50, 4333--4352 (2008; Zbl 1194.74524) Full Text: DOI OpenURL
Cueto-Felgueroso, Luis; Peraire, Jaume A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations. (English) Zbl 1153.76043 J. Comput. Phys. 227, No. 24, 9985-10017 (2008). MSC: 76M12 74S10 76M20 74S20 PDF BibTeX XML Cite \textit{L. Cueto-Felgueroso} and \textit{J. Peraire}, J. Comput. Phys. 227, No. 24, 9985--10017 (2008; Zbl 1153.76043) Full Text: DOI OpenURL
Eilks, C.; Elliott, C. M. Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method. (English) Zbl 1149.76027 J. Comput. Phys. 227, No. 23, 9727-9741 (2008). MSC: 76M10 76T99 76W05 PDF BibTeX XML Cite \textit{C. Eilks} and \textit{C. M. Elliott}, J. Comput. Phys. 227, No. 23, 9727--9741 (2008; Zbl 1149.76027) Full Text: DOI OpenURL
Cueto-Felgueroso, Luis; Colominas, Ignasi High-order finite volume methods and multiresolution reproducing kernels. (English) Zbl 1300.76018 Arch. Comput. Methods Eng. 15, No. 2, 185-228 (2008). MSC: 76M12 76N15 76-02 PDF BibTeX XML Cite \textit{L. Cueto-Felgueroso} and \textit{I. Colominas}, Arch. Comput. Methods Eng. 15, No. 2, 185--228 (2008; Zbl 1300.76018) Full Text: DOI OpenURL
Zhou, Shiwei; Wang, Michael Yu Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. (English) Zbl 1245.74077 Struct. Multidiscip. Optim. 33, No. 2, 89-111 (2007). MSC: 74P15 74H15 74G65 PDF BibTeX XML Cite \textit{S. Zhou} and \textit{M. Y. Wang}, Struct. Multidiscip. Optim. 33, No. 2, 89--111 (2007; Zbl 1245.74077) Full Text: DOI OpenURL
Lu, H.-W.; Glasner, K.; Bertozzi, A. L.; Kim, C.-J. A diffuse-interface model for electrowetting drops in a Hele-Shaw cell. (English) Zbl 1141.76482 J. Fluid Mech. 590, 411-435 (2007). MSC: 76W05 76D27 76R50 PDF BibTeX XML Cite \textit{H. W. Lu} et al., J. Fluid Mech. 590, 411--435 (2007; Zbl 1141.76482) Full Text: DOI OpenURL
Xia, Yinhua; Xu, Yan; Shu, Chi-Wang Local discontinuous Galerkin methods for the Cahn-Hilliard type equations. (English) Zbl 1131.65088 J. Comput. Phys. 227, No. 1, 472-491 (2007). Reviewer: Fuhua Ling (Milpitas) MSC: 65M60 35K55 65M12 PDF BibTeX XML Cite \textit{Y. Xia} et al., J. Comput. Phys. 227, No. 1, 472--491 (2007; Zbl 1131.65088) Full Text: DOI OpenURL
Kim, Junseok A numerical method for the Cahn-Hilliard equation with a variable mobility. (English) Zbl 1118.35049 Commun. Nonlinear Sci. Numer. Simul. 12, No. 8, 1560-1571 (2007). MSC: 35Q72 37L65 65M55 PDF BibTeX XML Cite \textit{J. Kim}, Commun. Nonlinear Sci. Numer. Simul. 12, No. 8, 1560--1571 (2007; Zbl 1118.35049) Full Text: DOI OpenURL
Ming, Wang; Xu, Jinchao Nonconforming tetrahedral finite elements for fourth order elliptic equations. (English) Zbl 1125.65105 Math. Comput. 76, No. 257, 1-18 (2007). Reviewer: Viorel Arnăutu (Iaşi) MSC: 65N30 35J40 PDF BibTeX XML Cite \textit{W. Ming} and \textit{J. Xu}, Math. Comput. 76, No. 257, 1--18 (2007; Zbl 1125.65105) Full Text: DOI OpenURL
Wells, Garth N.; Kuhl, Ellen; Garikipati, Krishna A discontinuous Galerkin method for the Cahn-Hilliard equation. (English) Zbl 1106.65086 J. Comput. Phys. 218, No. 2, 860-877 (2006). MSC: 65M60 65M12 65M15 35K55 35Q72 PDF BibTeX XML Cite \textit{G. N. Wells} et al., J. Comput. Phys. 218, No. 2, 860--877 (2006; Zbl 1106.65086) Full Text: DOI OpenURL
Liu, Changchun; Qi, Yuanwei; Yin, Jingxue Regularity of solutions of the Cahn-Hilliard equation with non-constant mobility. (English) Zbl 1106.35011 Acta Math. Sin., Engl. Ser. 22, No. 4, 1139-1150 (2006). MSC: 35B45 35B65 35K35 35K55 35D10 PDF BibTeX XML Cite \textit{C. Liu} et al., Acta Math. Sin., Engl. Ser. 22, No. 4, 1139--1150 (2006; Zbl 1106.35011) Full Text: DOI OpenURL
Kay, David; Welford, Richard A multigrid finite element solver for the Cahn-Hilliard equation. (English) Zbl 1081.65091 J. Comput. Phys. 212, No. 1, 288-304 (2006). MSC: 65M55 65M60 65M12 35Q72 PDF BibTeX XML Cite \textit{D. Kay} and \textit{R. Welford}, J. Comput. Phys. 212, No. 1, 288--304 (2006; Zbl 1081.65091) Full Text: DOI OpenURL
Barrett, John W.; Garcke, Harald; Nürnberg, Robert Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid. (English) Zbl 1078.74050 Math. Comput. 75, No. 253, 7-41 (2006). MSC: 74S05 74A50 65M12 35K65 35K57 PDF BibTeX XML Cite \textit{J. W. Barrett} et al., Math. Comput. 75, No. 253, 7--41 (2006; Zbl 1078.74050) Full Text: DOI OpenURL
Kim, Junseok; Kang, Kyungkeun; Lowengrub, John Conservative multigrid methods for Cahn–Hilliard fluids. (English) Zbl 1109.76348 J. Comput. Phys. 193, No. 2, 511-543 (2004). MSC: 76M25 65M55 76A05 76D45 76E17 PDF BibTeX XML Cite \textit{J. Kim} et al., J. Comput. Phys. 193, No. 2, 511--543 (2004; Zbl 1109.76348) Full Text: DOI OpenURL
Grün, Günther On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions. (English) Zbl 1084.65093 Math. Comput. 72, No. 243, 1251-1279 (2003). MSC: 65M60 35Q35 65M12 76A20 76D08 76M10 PDF BibTeX XML Cite \textit{G. Grün}, Math. Comput. 72, No. 243, 1251--1279 (2003; Zbl 1084.65093) Full Text: DOI OpenURL
Barrett, John W.; Blowey, James F.; Garcke, Harald On fully practical finite element approximations of degenerate Cahn-Hilliard systems. (English) Zbl 0987.35071 M2AN, Math. Model. Numer. Anal. 35, No. 4, 713-748 (2001). Reviewer: Prabhat Kumar Mahanti (New Brunswick) MSC: 35K35 65M60 35K65 65M12 35K55 82C26 PDF BibTeX XML Cite \textit{J. W. Barrett} et al., M2AN, Math. Model. Numer. Anal. 35, No. 4, 713--748 (2001; Zbl 0987.35071) Full Text: DOI Numdam EuDML OpenURL