Barker, Tobias; Wang, Wendong Estimates of the singular set for the Navier-Stokes equations with supercritical assumptions on the pressure. (English) Zbl 1518.76013 J. Differ. Equations 365, 379-407 (2023). Reviewer: Fatma Gamze Duzgun (Ankara) MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{T. Barker} and \textit{W. Wang}, J. Differ. Equations 365, 379--407 (2023; Zbl 1518.76013) Full Text: DOI arXiv
Kwon, Hyunju The role of the pressure in the regularity theory for the Navier-Stokes equations. (English) Zbl 1512.35443 J. Differ. Equations 357, 1-31 (2023). MSC: 35Q30 76D05 35D30 35B65 PDF BibTeX XML Cite \textit{H. Kwon}, J. Differ. Equations 357, 1--31 (2023; Zbl 1512.35443) Full Text: DOI arXiv
Kang, Kyungkeun; Nguyen, Dinh Duong Local regularity criteria in terms of one velocity component for the Navier-Stokes equations. (English) Zbl 1504.35229 J. Math. Fluid Mech. 25, No. 1, Paper No. 10, 15 p. (2023). MSC: 35Q30 76D03 76D05 35B65 35D30 PDF BibTeX XML Cite \textit{K. Kang} and \textit{D. D. Nguyen}, J. Math. Fluid Mech. 25, No. 1, Paper No. 10, 15 p. (2023; Zbl 1504.35229) Full Text: DOI arXiv
Albritton, Dallas; Barker, Tobias; Prange, Christophe Localized smoothing and concentration for the Navier-Stokes equations in the half space. (English) Zbl 1501.35279 J. Funct. Anal. 284, No. 1, Article ID 109729, 42 p. (2023). MSC: 35Q30 76D05 35B65 35B44 PDF BibTeX XML Cite \textit{D. Albritton} et al., J. Funct. Anal. 284, No. 1, Article ID 109729, 42 p. (2023; Zbl 1501.35279) Full Text: DOI arXiv
Yang, Jiaqi Partially regular weak solutions to the fractional Navier-Stokes equations with the critical dissipation. (English) Zbl 1508.76032 J. Math. Phys. 63, No. 11, Article ID 111501, 13 p. (2022). MSC: 76D03 35Q30 35D30 PDF BibTeX XML Cite \textit{J. Yang}, J. Math. Phys. 63, No. 11, Article ID 111501, 13 p. (2022; Zbl 1508.76032) Full Text: DOI
Neustupa, Jiří; Penel, Patrick; Yang, Minsuk Regularity criteria for weak solutions to the Navier-Stokes equations in terms of spectral projections of vorticity and velocity. (English) Zbl 07601577 J. Math. Fluid Mech. 24, No. 4, Paper No. 104, 12 p. (2022). MSC: 35Q30 76D03 76D05 35B65 35D30 PDF BibTeX XML Cite \textit{J. Neustupa} et al., J. Math. Fluid Mech. 24, No. 4, Paper No. 104, 12 p. (2022; Zbl 07601577) Full Text: DOI
Chen, Hui; Tsai, Tai-Peng; Zhang, Ting Remarks on local regularity of axisymmetric solutions to the 3D Navier-Stokes equations. (English) Zbl 1492.35219 Commun. Partial Differ. Equations 47, No. 8, 1680-1699 (2022); correction ibid. 48, No. 6, 987-988 (2023). MSC: 35Q35 35Q30 76D03 PDF BibTeX XML Cite \textit{H. Chen} et al., Commun. Partial Differ. Equations 47, No. 8, 1680--1699 (2022; Zbl 1492.35219) Full Text: DOI arXiv
Bradshaw, Zachary; Kukavica, Igor; Ożański, Wojciech S. Global weak solutions of the Navier-Stokes equations for intermittent initial data in half-space. (English) Zbl 1504.35214 Arch. Ration. Mech. Anal. 245, No. 1, 321-371 (2022). MSC: 35Q30 76D05 35D30 35B45 35B65 35C06 35A01 PDF BibTeX XML Cite \textit{Z. Bradshaw} et al., Arch. Ration. Mech. Anal. 245, No. 1, 321--371 (2022; Zbl 1504.35214) Full Text: DOI arXiv
Lu, Rui; Guo, Chunxiao; Yang, Xin-Guang; Zhang, Pan Dynamics for three dimensional generalized Navier-Stokes equations with delay. (English) Zbl 1499.35481 J. Partial Differ. Equations 35, No. 2, 123-147 (2022). MSC: 35Q30 35B40 PDF BibTeX XML Cite \textit{R. Lu} et al., J. Partial Differ. Equations 35, No. 2, 123--147 (2022; Zbl 1499.35481) Full Text: DOI
Bradshaw, Zachary; Kukavica, Igor; Tsai, Tai-Peng Existence of global weak solutions to the Navier-Stokes equations in weighted spaces. (English) Zbl 1507.35137 Indiana Univ. Math. J. 71, No. 1, 191-212 (2022). MSC: 35Q30 76D05 35B65 35C06 35D30 35A01 PDF BibTeX XML Cite \textit{Z. Bradshaw} et al., Indiana Univ. Math. J. 71, No. 1, 191--212 (2022; Zbl 1507.35137) Full Text: DOI arXiv
Seregin, G. A note on local regularity of axisymmetric solutions to the Navier-Stokes equations. (English) Zbl 1518.76014 J. Math. Fluid Mech. 24, No. 1, Paper No. 27, 13 p. (2022). Reviewer: Thomas Eiter (Berlin) MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{G. Seregin}, J. Math. Fluid Mech. 24, No. 1, Paper No. 27, 13 p. (2022; Zbl 1518.76014) Full Text: DOI arXiv
Seregin, G. A slightly supercritical condition of regularity of axisymmetric solutions to the Navier-Stokes equations. (English) Zbl 1513.76060 J. Math. Fluid Mech. 24, No. 1, Paper No. 18, 17 p. (2022). MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{G. Seregin}, J. Math. Fluid Mech. 24, No. 1, Paper No. 18, 17 p. (2022; Zbl 1513.76060) Full Text: DOI arXiv
Kim, Jae-Myoung Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space. (English) Zbl 07543222 AIMS Math. 6, No. 3, 2440-2453 (2021). MSC: 35B65 76W05 PDF BibTeX XML Cite \textit{J.-M. Kim}, AIMS Math. 6, No. 3, 2440--2453 (2021; Zbl 07543222) Full Text: DOI
Farwig, Reinhard From Jean Leray to the millennium problem: the Navier-Stokes equations. (English) Zbl 1492.35002 J. Evol. Equ. 21, No. 3, 3243-3263 (2021); correction ibid. 21, No. 3, 3265-3266 (2021). Reviewer: Evan Miller (Hamilton) MSC: 35-02 35Q30 76D05 35B65 35B44 PDF BibTeX XML Cite \textit{R. Farwig}, J. Evol. Equ. 21, No. 3, 3243--3263 (2021; Zbl 1492.35002) Full Text: DOI
Burczak, Jan; Ożański, Wojciech S.; Seregin, Gregory On regularity properties of a surface growth model. (English) Zbl 1479.35166 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 6, 1869-1892 (2021). MSC: 35B65 35K58 35K30 76D03 74K35 35Q35 35Q30 PDF BibTeX XML Cite \textit{J. Burczak} et al., Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 6, 1869--1892 (2021; Zbl 1479.35166) Full Text: DOI arXiv
Lemarié-Rieusset, Pierre Gilles Real variable methods in harmonic analysis and Navier-Stokes equations. (English) Zbl 1486.35327 Rassias, Michael Th. (ed.), Harmonic analysis and applications. Cham: Springer. Springer Optim. Appl. 168, 243-277 (2021). Reviewer: Gheorghe Moroşanu (Cluj-Napoca) MSC: 35Q30 35Q79 76D05 42B37 42B25 42B10 42B20 PDF BibTeX XML Cite \textit{P. G. Lemarié-Rieusset}, Springer Optim. Appl. 168, 243--277 (2021; Zbl 1486.35327) Full Text: DOI arXiv
Liu, Qiao On partial regularity criterion for the co-rotational Beris-Edwards system modeling nematic liquid crystal flow. (English) Zbl 1481.35336 J. Differ. Equations 301, 300-329 (2021). MSC: 35Q35 76D03 76A15 76U05 35D30 35B65 PDF BibTeX XML Cite \textit{Q. Liu}, J. Differ. Equations 301, 300--329 (2021; Zbl 1481.35336) Full Text: DOI
Liu, Xiangao; Liu, Yueli; Liu, Zixuan A remark on regularity of liquid crystal equations in critical Lorentz spaces. (English) Zbl 1468.76009 Ann. Mat. Pura Appl. (4) 200, No. 4, 1709-1734 (2021). MSC: 76A15 35Q35 PDF BibTeX XML Cite \textit{X. Liu} et al., Ann. Mat. Pura Appl. (4) 200, No. 4, 1709--1734 (2021; Zbl 1468.76009) Full Text: DOI
Seregin, G. A note on weak solutions to the Navier-Stokes equations that are locally in \(L_\infty (L^{3,\infty })\). (English) Zbl 1464.35192 St. Petersbg. Math. J. 32, No. 3, 565-576 (2021) and Algebra Anal. 32, No. 3, 238-253 (2020). MSC: 35Q30 76D05 35D30 35B65 PDF BibTeX XML Cite \textit{G. Seregin}, St. Petersbg. Math. J. 32, No. 3, 565--576 (2021; Zbl 1464.35192) Full Text: DOI arXiv
Chen, Ya-zhou; Li, Hai-liang; Shi, Xiao-ding Partial regularity of suitable weak solutions to the system of the incompressible shear-thinning flow. (English) Zbl 1464.35214 Acta Math. Appl. Sin., Engl. Ser. 37, No. 2, 348-363 (2021). MSC: 35Q35 35B40 76N10 76A05 35B65 35D30 PDF BibTeX XML Cite \textit{Y.-z. Chen} et al., Acta Math. Appl. Sin., Engl. Ser. 37, No. 2, 348--363 (2021; Zbl 1464.35214) Full Text: DOI
Bradshaw, Zachary; Tsai, Tai-Peng Local energy solutions to the Navier-Stokes equations in Wiener amalgam spaces. (English) Zbl 1464.35172 SIAM J. Math. Anal. 53, No. 2, 1993-2026 (2021). MSC: 35Q30 76D05 35B65 PDF BibTeX XML Cite \textit{Z. Bradshaw} and \textit{T.-P. Tsai}, SIAM J. Math. Anal. 53, No. 2, 1993--2026 (2021; Zbl 1464.35172) Full Text: DOI arXiv
Yang, Jiaqi Energy conservation for weak solutions of a surface growth model. (English) Zbl 1459.35232 J. Differ. Equations 283, 71-84 (2021). MSC: 35K25 35K55 76D03 35Q35 35Q30 PDF BibTeX XML Cite \textit{J. Yang}, J. Differ. Equations 283, 71--84 (2021; Zbl 1459.35232) Full Text: DOI
Chamorro, Diego; He, Jiao On the partial regularity theory for the MHD equations. (English) Zbl 1458.35094 J. Math. Anal. Appl. 494, No. 1, Article ID 124449, 38 p. (2021). MSC: 35B65 76W05 35Q35 PDF BibTeX XML Cite \textit{D. Chamorro} and \textit{J. He}, J. Math. Anal. Appl. 494, No. 1, Article ID 124449, 38 p. (2021; Zbl 1458.35094) Full Text: DOI arXiv
Gan, Zaihui; Guo, Qing; Lu, Yong Regularity and stability of finite energy weak solutions for the Camassa-Holm equations with nonlocal viscosity. (English) Zbl 1461.35083 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 26, 27 p. (2021). Reviewer: Giuseppe Maria Coclite (Bari) MSC: 35B65 35R11 35Q35 35B35 PDF BibTeX XML Cite \textit{Z. Gan} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 26, 27 p. (2021; Zbl 1461.35083) Full Text: DOI
Chen, Eric Partial regularity for the steady hyperdissipative fractional Navier-Stokes equations. (English) Zbl 1456.35058 Commun. Math. Phys. 381, No. 1, 1-31 (2021). MSC: 35B65 35Q30 35R11 PDF BibTeX XML Cite \textit{E. Chen}, Commun. Math. Phys. 381, No. 1, 1--31 (2021; Zbl 1456.35058) Full Text: DOI arXiv
Beirão da Veiga, Hugo; Yang, Jiaqi On the partial regularity of suitable weak solutions in the non-Newtonian shear-thinning case. (English) Zbl 1476.35166 Nonlinearity 34, No. 1, 562-577 (2021). Reviewer: Diego Chamorro (Évry) MSC: 35Q30 76A05 76D03 35B65 PDF BibTeX XML Cite \textit{H. Beirão da Veiga} and \textit{J. Yang}, Nonlinearity 34, No. 1, 562--577 (2021; Zbl 1476.35166) Full Text: DOI
Jang, Yunsoo; Kim, Dugyu Suitable weak solutions of the incompressible magnetohydrodynamic equations in time varying domains. (English) Zbl 1468.35139 Acta Appl. Math. 170, 709-730 (2020). MSC: 35Q35 35D30 76D05 76W05 35R37 PDF BibTeX XML Cite \textit{Y. Jang} and \textit{D. Kim}, Acta Appl. Math. 170, 709--730 (2020; Zbl 1468.35139) Full Text: DOI
Bradshaw, Zachary; Tsai, Tai-Peng Global existence, regularity, and uniqueness of infinite energy solutions to the Navier-Stokes equations. (English) Zbl 1448.35360 Commun. Partial Differ. Equations 45, No. 9, 1168-1201 (2020). MSC: 35Q30 76D05 35A01 35A02 35B65 76D03 PDF BibTeX XML Cite \textit{Z. Bradshaw} and \textit{T.-P. Tsai}, Commun. Partial Differ. Equations 45, No. 9, 1168--1201 (2020; Zbl 1448.35360) Full Text: DOI arXiv
Higaki, Mitsuo; Prange, Christophe Regularity for the stationary Navier-Stokes equations over bumpy boundaries and a local wall law. (English) Zbl 1445.35030 Calc. Var. Partial Differ. Equ. 59, No. 4, Paper No. 131, 46 p. (2020). MSC: 35B27 35B65 35Q30 76D03 76D05 76D10 76M50 PDF BibTeX XML Cite \textit{M. Higaki} and \textit{C. Prange}, Calc. Var. Partial Differ. Equ. 59, No. 4, Paper No. 131, 46 p. (2020; Zbl 1445.35030) Full Text: DOI arXiv
Dong, Hongjie; Wang, Kunrui Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. (English) Zbl 1442.35299 Discrete Contin. Dyn. Syst. 40, No. 9, 5289-5323 (2020). MSC: 35Q30 35B65 76D05 76D03 35D30 PDF BibTeX XML Cite \textit{H. Dong} and \textit{K. Wang}, Discrete Contin. Dyn. Syst. 40, No. 9, 5289--5323 (2020; Zbl 1442.35299) Full Text: DOI arXiv
Choe, Hi Jun; Wolf, Jörg; Yang, Minsuk On regularity and singularity for \(L^{\infty }(0,T;L^{3,w}(\mathbb{R}^3))\) solutions to the Navier-Stokes equations. (English) Zbl 1447.35242 Math. Ann. 377, No. 1-2, 617-642 (2020). Reviewer: Il’ya Sh. Mogilevskii (Tver’) MSC: 35Q30 76D05 35D30 35B65 PDF BibTeX XML Cite \textit{H. J. Choe} et al., Math. Ann. 377, No. 1--2, 617--642 (2020; Zbl 1447.35242) Full Text: DOI arXiv
Barker, Tobias; Prange, Christophe Localized smoothing for the Navier-Stokes equations and concentration of critical norms near singularities. (English) Zbl 1439.35363 Arch. Ration. Mech. Anal. 236, No. 3, 1487-1541 (2020). MSC: 35Q30 35B44 35B45 35B65 76D05 PDF BibTeX XML Cite \textit{T. Barker} and \textit{C. Prange}, Arch. Ration. Mech. Anal. 236, No. 3, 1487--1541 (2020; Zbl 1439.35363) Full Text: DOI arXiv
Ożański, Wojciech S. Weak solutions to the Navier-Stokes inequality with arbitrary energy profiles. (English) Zbl 1439.35374 Commun. Math. Phys. 374, No. 1, 33-62 (2020). MSC: 35Q30 35B65 35B33 35B45 35K59 35B44 35D30 76D05 PDF BibTeX XML Cite \textit{W. S. Ożański}, Commun. Math. Phys. 374, No. 1, 33--62 (2020; Zbl 1439.35374) Full Text: DOI arXiv
Xu, Liyang; Shen, Tianlong; Yang, Xuejun; Liang, Jiarui Analysis of time fractional and space nonlocal stochastic incompressible Navier-Stokes equation driven by white noise. (English) Zbl 1442.60069 Comput. Math. Appl. 78, No. 5, 1669-1680 (2019). MSC: 60H15 35R11 35Q30 35R60 76D06 PDF BibTeX XML Cite \textit{L. Xu} et al., Comput. Math. Appl. 78, No. 5, 1669--1680 (2019; Zbl 1442.60069) Full Text: DOI
He, Cheng; Wang, Yanqing; Zhou, Daoguo New \(\varepsilon \)-regularity criteria of suitable weak solutions of the 3D Navier-Stokes equations at one scale. (English) Zbl 1427.35177 J. Nonlinear Sci. 29, No. 6, 2681-2698 (2019). MSC: 35Q30 35B65 35D30 76D05 PDF BibTeX XML Cite \textit{C. He} et al., J. Nonlinear Sci. 29, No. 6, 2681--2698 (2019; Zbl 1427.35177) Full Text: DOI arXiv
Wang, Yanqing; Yang, Minsuk Improved bounds for box dimensions of potential singular points to the Navier-Stokes equations. (English) Zbl 1425.76056 Nonlinearity 32, No. 12, 4817-4833 (2019). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{M. Yang}, Nonlinearity 32, No. 12, 4817--4833 (2019; Zbl 1425.76056) Full Text: DOI arXiv
Li, Kuijie; Wang, Baoxiang Blowup criterion for Navier-Stokes equation in critical Besov space with spatial dimensions \(d \geq 4\). (English) Zbl 1428.35302 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 6, 1679-1707 (2019). MSC: 35Q30 35B44 35B65 76D05 PDF BibTeX XML Cite \textit{K. Li} and \textit{B. Wang}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 6, 1679--1707 (2019; Zbl 1428.35302) Full Text: DOI arXiv
Choe, Hi Jun; Yang, Minsuk The Minkowski dimension of boundary singular points in the Navier-Stokes equations. (English) Zbl 1419.35082 J. Differ. Equations 267, No. 8, 4705-4718 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 35K20 35Q30 35B65 35B50 PDF BibTeX XML Cite \textit{H. J. Choe} and \textit{M. Yang}, J. Differ. Equations 267, No. 8, 4705--4718 (2019; Zbl 1419.35082) Full Text: DOI arXiv
Wang, Yanqing; Wu, Gang; Zhou, Daoguo A regularity criterion at one scale without pressure for suitable weak solutions to the Navier-Stokes equations. (English) Zbl 1452.76039 J. Differ. Equations 267, No. 8, 4673-4704 (2019). MSC: 76D03 76D05 35B33 35Q35 35D30 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Differ. Equations 267, No. 8, 4673--4704 (2019; Zbl 1452.76039) Full Text: DOI
Liu, Xian-Gao; Min, Jianzhong; Zhang, Xiaotao \(L^{3,\infty}\) solutions of the liquid crystals system. (English) Zbl 1426.76045 J. Differ. Equations 267, No. 4, 2643-2670 (2019). Reviewer: Alain Brillard (Riedisheim) MSC: 76A15 35Q35 PDF BibTeX XML Cite \textit{X.-G. Liu} et al., J. Differ. Equations 267, No. 4, 2643--2670 (2019; Zbl 1426.76045) Full Text: DOI
Kukavica, Igor; Rusin, Walter; Ziane, Mohammed On local regularity conditions for the Navier-Stokes equations. (English) Zbl 1416.35188 Nonlinearity 32, No. 6, 1905-1928 (2019). MSC: 35Q30 76D05 35B65 PDF BibTeX XML Cite \textit{I. Kukavica} et al., Nonlinearity 32, No. 6, 1905--1928 (2019; Zbl 1416.35188) Full Text: DOI
Jiu, Quansen; Wang, Yanqing; Zhou, Daoguo On Wolf’s regularity criterion of suitable weak solutions to the Navier-Stokes equations. (English) Zbl 1411.76022 J. Math. Fluid Mech. 21, No. 2, Paper No. 22, 16 p. (2019). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{Q. Jiu} et al., J. Math. Fluid Mech. 21, No. 2, Paper No. 22, 16 p. (2019; Zbl 1411.76022) Full Text: DOI arXiv
Ożański, Wojciech S. A sufficient integral condition for local regularity of solutions to the surface growth model. (English) Zbl 1410.35099 J. Funct. Anal. 276, No. 10, 2990-3013 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 35D30 35B65 PDF BibTeX XML Cite \textit{W. S. Ożański}, J. Funct. Anal. 276, No. 10, 2990--3013 (2019; Zbl 1410.35099) Full Text: DOI arXiv Link
Albritton, Dallas; Barker, Tobias Global weak Besov solutions of the Navier-Stokes equations and applications. (English) Zbl 1412.35213 Arch. Ration. Mech. Anal. 232, No. 1, 197-263 (2019). MSC: 35Q30 35D30 35B35 35B44 35C06 35B65 76D05 PDF BibTeX XML Cite \textit{D. Albritton} and \textit{T. Barker}, Arch. Ration. Mech. Anal. 232, No. 1, 197--263 (2019; Zbl 1412.35213) Full Text: DOI arXiv
Ożański, Wojciech S.; Robinson, James C. Partial regularity for a surface growth model. (English) Zbl 1408.35065 SIAM J. Math. Anal. 51, No. 1, 228-255 (2019). Reviewer: Alain Brillard (Riedisheim) MSC: 35K25 35K55 76D03 74K35 35Q35 35Q30 PDF BibTeX XML Cite \textit{W. S. Ożański} and \textit{J. C. Robinson}, SIAM J. Math. Anal. 51, No. 1, 228--255 (2019; Zbl 1408.35065) Full Text: DOI arXiv
Buckmaster, Tristan; Vicol, Vlad Nonuniqueness of weak solutions to the Navier-Stokes equation. (English) Zbl 1412.35215 Ann. Math. (2) 189, No. 1, 101-144 (2019). Reviewer: Gelu Paşa (Bucureşti) MSC: 35Q30 35Q31 35Q35 76F02 35D30 76D05 PDF BibTeX XML Cite \textit{T. Buckmaster} and \textit{V. Vicol}, Ann. Math. (2) 189, No. 1, 101--144 (2019; Zbl 1412.35215) Full Text: DOI arXiv
Gan, Zaihui; He, Yong; Meng, Linghui Large time behavior and convergence for the Camassa-Holm equations with fractional Laplacian viscosity. (English) Zbl 1400.35028 Calc. Var. Partial Differ. Equ. 57, No. 6, Paper No. 162, 48 p. (2018). MSC: 35B40 35G25 35K55 35R11 PDF BibTeX XML Cite \textit{Z. Gan} et al., Calc. Var. Partial Differ. Equ. 57, No. 6, Paper No. 162, 48 p. (2018; Zbl 1400.35028) Full Text: DOI arXiv
Neustupa, Jiří A contribution to the theory of regularity of a weak solution to the Navier-Stokes equations via one component of velocity and other related quantities. (English) Zbl 1401.35243 J. Math. Fluid Mech. 20, No. 3, 1249-1267 (2018). MSC: 35Q30 76D03 76D05 PDF BibTeX XML Cite \textit{J. Neustupa}, J. Math. Fluid Mech. 20, No. 3, 1249--1267 (2018; Zbl 1401.35243) Full Text: DOI
Chamorro, Diego; Lemarié-Rieusset, Pierre Gilles; Mayoufi, Kawther Local stability of energy estimates for the Navier-Stokes equations. (English) Zbl 1404.35320 Danchin, Raphaël (ed.) et al., Mathematical analysis in fluid mechanics: selected recent results. International conference on vorticity, rotation and symmetry (IV) – complex fluids and the issue of regularity, CIRM, Luminy, Marseille, France, May 8–12, 2017. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3646-9/pbk; 978-1-4704-4807-3/ebook). Contemporary Mathematics 710, 53-64 (2018). MSC: 35Q30 76D05 35B65 PDF BibTeX XML Cite \textit{D. Chamorro} et al., Contemp. Math. 710, 53--64 (2018; Zbl 1404.35320) Full Text: DOI arXiv
Ren, Wei; Wang, Yanqing; Wu, Gang Remarks on the singular set of suitable weak solutions for the three-dimensional Navier-Stokes equations. (English) Zbl 1401.35244 J. Math. Anal. Appl. 467, No. 2, 807-824 (2018). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q30 35D30 76D05 PDF BibTeX XML Cite \textit{W. Ren} et al., J. Math. Anal. Appl. 467, No. 2, 807--824 (2018; Zbl 1401.35244) Full Text: DOI
Li, Kuijie; Ozawa, Tohru; Wang, Baoxiang Dynamical behavior for the solutions of the Navier-Stokes equation. (English) Zbl 1397.35173 Commun. Pure Appl. Anal. 17, No. 4, 1511-1560 (2018). MSC: 35Q30 76B03 35B44 PDF BibTeX XML Cite \textit{K. Li} et al., Commun. Pure Appl. Anal. 17, No. 4, 1511--1560 (2018; Zbl 1397.35173) Full Text: DOI arXiv
Wang, Wendong; Zhang, Liqun; Zhang, Zhifei On the interior regularity criteria of the 3-D Navier-Stokes equations involving two velocity components. (English) Zbl 1397.35184 Discrete Contin. Dyn. Syst. 38, No. 5, 2609-2627 (2018). MSC: 35Q30 35B65 76D05 35B44 35D30 PDF BibTeX XML Cite \textit{W. Wang} et al., Discrete Contin. Dyn. Syst. 38, No. 5, 2609--2627 (2018; Zbl 1397.35184) Full Text: DOI arXiv
Albritton, Dallas Blow-up criteria for the Navier-Stokes equations in non-endpoint critical Besov spaces. (English) Zbl 1392.35202 Anal. PDE 11, No. 6, 1415-1456 (2018). MSC: 35Q30 35B44 35B45 76D05 PDF BibTeX XML Cite \textit{D. Albritton}, Anal. PDE 11, No. 6, 1415--1456 (2018; Zbl 1392.35202) Full Text: DOI arXiv
Neustupa, Jiří; Al Baba, Hind The interior regularity of pressure associated with a weak solution to the Navier-Stokes equations with the Navier-type boundary conditions. (English) Zbl 1390.35236 J. Math. Anal. Appl. 463, No. 1, 222-234 (2018). MSC: 35Q30 35B65 76D05 35D30 PDF BibTeX XML Cite \textit{J. Neustupa} and \textit{H. Al Baba}, J. Math. Anal. Appl. 463, No. 1, 222--234 (2018; Zbl 1390.35236) Full Text: DOI
Chamorro, Diego; Lemarié-Rieusset, Pierre-Gilles; Mayoufi, Kawther The role of the pressure in the partial regularity theory for weak solutions of the Navier-Stokes equations. (English) Zbl 1382.35185 Arch. Ration. Mech. Anal. 228, No. 1, 237-277 (2018). MSC: 35Q30 76D05 35D30 35B65 PDF BibTeX XML Cite \textit{D. Chamorro} et al., Arch. Ration. Mech. Anal. 228, No. 1, 237--277 (2018; Zbl 1382.35185) Full Text: DOI arXiv
Choe, Hi Jun; Wolf, Joerg; Yang, Minsuk A new local regularity criterion for suitable weak solutions of the Navier-Stokes equations in terms of the velocity gradient. (English) Zbl 1383.35157 Math. Ann. 370, No. 1-2, 629-647 (2018). MSC: 35Q35 35D30 35B65 76D05 PDF BibTeX XML Cite \textit{H. J. Choe} et al., Math. Ann. 370, No. 1--2, 629--647 (2018; Zbl 1383.35157) Full Text: DOI arXiv
Lai, Baishun; Ma, Wenya On the interior regularity criteria for liquid crystal flows. (English) Zbl 1382.35226 Nonlinear Anal., Real World Appl. 40, 1-13 (2018). MSC: 35Q35 76A15 35B65 35D30 PDF BibTeX XML Cite \textit{B. Lai} and \textit{W. Ma}, Nonlinear Anal., Real World Appl. 40, 1--13 (2018; Zbl 1382.35226) Full Text: DOI
Berselli, Luigi C.; Spirito, Stefano On the construction of suitable weak solutions to the 3D Navier-Stokes equations in a bounded domain by an artificial compressibility method. (English) Zbl 1386.35321 Commun. Contemp. Math. 20, No. 1, Article ID 1650064, 16 p. (2018). MSC: 35Q30 35A35 76M20 PDF BibTeX XML Cite \textit{L. C. Berselli} and \textit{S. Spirito}, Commun. Contemp. Math. 20, No. 1, Article ID 1650064, 16 p. (2018; Zbl 1386.35321) Full Text: DOI arXiv
Choe, Hi Jun; Yang, Minsuk Local kinetic energy and singularities of the incompressible Navier-Stokes equations. (English) Zbl 1382.35186 J. Differ. Equations 264, No. 2, 1171-1191 (2018). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 76D05 35B65 PDF BibTeX XML Cite \textit{H. J. Choe} and \textit{M. Yang}, J. Differ. Equations 264, No. 2, 1171--1191 (2018; Zbl 1382.35186) Full Text: DOI arXiv
Liu, Jitao; Wang, Wendong Boundary regularity criteria for the 6D steady Navier-Stokes and MHD equations. (English) Zbl 1378.35221 J. Differ. Equations 264, No. 3, 2351-2376 (2018). MSC: 35Q30 76D03 35D30 76W05 76D05 PDF BibTeX XML Cite \textit{J. Liu} and \textit{W. Wang}, J. Differ. Equations 264, No. 3, 2351--2376 (2018; Zbl 1378.35221) Full Text: DOI arXiv
Kukavica, Igor; Rusin, Walter; Ziane, Mohammed Localized anisotropic regularity conditions for the Navier-Stokes equations. (English) Zbl 1379.35213 J. Nonlinear Sci. 27, No. 6, 1725-1742 (2017). MSC: 35Q30 35B65 76D05 PDF BibTeX XML Cite \textit{I. Kukavica} et al., J. Nonlinear Sci. 27, No. 6, 1725--1742 (2017; Zbl 1379.35213) Full Text: DOI
Barker, Tobias Local boundary regularity for the Navier-Stokes equations in non-endpoint borderline Lorentz spaces. (English) Zbl 1373.35062 J. Math. Sci., New York 224, No. 3, 391-413 (2017) and Zap. Nauchn. Semin. POMI 444, 15-46 (2016). MSC: 35B65 35Q30 PDF BibTeX XML Cite \textit{T. Barker}, J. Math. Sci., New York 224, No. 3, 391--413 (2017; Zbl 1373.35062) Full Text: DOI arXiv
Choe, Hi Jun; Jang, Yunsoo; Yang, Minsuk Existence of suitable weak solutions to the Navier-Stokes equations in time varying domains. (English) Zbl 1386.35145 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 163, 163-176 (2017). MSC: 35K20 35A01 35D30 PDF BibTeX XML Cite \textit{H. J. Choe} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 163, 163--176 (2017; Zbl 1386.35145) Full Text: DOI
Guevara, Cristi; Phuc, Nguyen Cong Local energy bounds and \(\epsilon\)-regularity criteria for the 3D Navier-Stokes system. (English) Zbl 1375.35316 Calc. Var. Partial Differ. Equ. 56, No. 3, Paper No. 68, 16 p. (2017). MSC: 35Q30 35Q35 35B65 76D05 PDF BibTeX XML Cite \textit{C. Guevara} and \textit{N. C. Phuc}, Calc. Var. Partial Differ. Equ. 56, No. 3, Paper No. 68, 16 p. (2017; Zbl 1375.35316) Full Text: DOI arXiv
Fang, Daoyuan; Liu, Chun; Qian, Chenyin On partial regularity problem for 3D Boussinesq equations. (English) Zbl 1372.35233 J. Differ. Equations 263, No. 7, 4156-4221 (2017). MSC: 35Q35 76B03 76D03 35B65 35D30 PDF BibTeX XML Cite \textit{D. Fang} et al., J. Differ. Equations 263, No. 7, 4156--4221 (2017; Zbl 1372.35233) Full Text: DOI
Kukavica, Igor; Rusin, Walter; Ziane, Mohammed An anisotropic partial regularity criterion for the Navier-Stokes equations. (English) Zbl 1457.76055 J. Math. Fluid Mech. 19, No. 1, 123-133 (2017). MSC: 76D03 76D05 35D30 PDF BibTeX XML Cite \textit{I. Kukavica} et al., J. Math. Fluid Mech. 19, No. 1, 123--133 (2017; Zbl 1457.76055) Full Text: DOI arXiv
Zhou, Daoguo Global well-posedness for an incompressible flow with intrinsic degrees of freedom in bounded domains. (English) Zbl 1368.35226 Appl. Anal. 96, No. 6, 1004-1015 (2017). MSC: 35Q35 76D05 35D35 35D30 PDF BibTeX XML Cite \textit{D. Zhou}, Appl. Anal. 96, No. 6, 1004--1015 (2017; Zbl 1368.35226) Full Text: DOI
Crispo, Francesca; Maremonti, Paolo A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. (English) Zbl 1360.35139 Discrete Contin. Dyn. Syst. 37, No. 3, 1283-1294 (2017). MSC: 35Q30 35B65 76D03 PDF BibTeX XML Cite \textit{F. Crispo} and \textit{P. Maremonti}, Discrete Contin. Dyn. Syst. 37, No. 3, 1283--1294 (2017; Zbl 1360.35139) Full Text: DOI arXiv
Ma, Wenya; Feng, Jiqiang Interior regularity criterion for incompressible Ericksen-Leslie system. (English) Zbl 1360.35185 Bound. Value Probl. 2017, Paper No. 62, 7 p. (2017). MSC: 35Q35 76D03 PDF BibTeX XML Cite \textit{W. Ma} and \textit{J. Feng}, Bound. Value Probl. 2017, Paper No. 62, 7 p. (2017; Zbl 1360.35185) Full Text: DOI
Miao, Changxing; Wang, Yanqing Regularity conditions for suitable weak solutions of the Navier-Stokes system from its rotation form. (English) Zbl 1364.35243 Pac. J. Math. 288, No. 1, 189-215 (2017). MSC: 35Q30 35B65 35D30 76U05 76D05 PDF BibTeX XML Cite \textit{C. Miao} and \textit{Y. Wang}, Pac. J. Math. 288, No. 1, 189--215 (2017; Zbl 1364.35243) Full Text: DOI
Lai, Baishun; Lin, Junyu; Wang, Changyou Forward self-similar solutions to the viscoelastic Navier-Stokes equation with damping. (English) Zbl 1358.76012 SIAM J. Math. Anal. 49, No. 1, 501-529 (2017). MSC: 76B03 35Q31 PDF BibTeX XML Cite \textit{B. Lai} et al., SIAM J. Math. Anal. 49, No. 1, 501--529 (2017; Zbl 1358.76012) Full Text: DOI arXiv
Berselli, Luigi C.; Spirito, Stefano Suitable weak solutions to the 3D Navier-Stokes equations are constructed with the Voigt approximation. (English) Zbl 1371.35191 J. Differ. Equations 262, No. 5, 3285-3316 (2017). Reviewer: Ruxandra Stavre (Bucureşti) MSC: 35Q30 35A35 35D30 35B65 35B45 76D05 PDF BibTeX XML Cite \textit{L. C. Berselli} and \textit{S. Spirito}, J. Differ. Equations 262, No. 5, 3285--3316 (2017; Zbl 1371.35191) Full Text: DOI arXiv
Wang, Yanqing; Wu, Gang Anisotropic regularity conditions for the suitable weak solutions to the 3D Navier-Stokes equations. (English) Zbl 1359.35136 J. Math. Fluid Mech. 18, No. 4, 699-716 (2016). MSC: 35Q30 35A02 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{G. Wu}, J. Math. Fluid Mech. 18, No. 4, 699--716 (2016; Zbl 1359.35136) Full Text: DOI arXiv
Ren, Wei; Wang, Yanqing; Wu, Gang Partial regularity of suitable weak solutions to the multi-dimensional generalized magnetohydrodynamics equations. (English) Zbl 1348.76047 Commun. Contemp. Math. 18, No. 6, Article ID 1650018, 38 p. (2016). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{W. Ren} et al., Commun. Contemp. Math. 18, No. 6, Article ID 1650018, 38 p. (2016; Zbl 1348.76047) Full Text: DOI arXiv
Chen, Yukang; Wei, Changhua Partial regularity of solutions to the fractional Navier-Stokes equations. (English) Zbl 1426.76087 Discrete Contin. Dyn. Syst. 36, No. 10, 5309-5322 (2016). MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{C. Wei}, Discrete Contin. Dyn. Syst. 36, No. 10, 5309--5322 (2016; Zbl 1426.76087) Full Text: DOI
Yu, Huan Partial regularity criteria for suitable weak solutions of the three-dimensional liquid crystals flow. (English) Zbl 1347.35060 Math. Methods Appl. Sci. 39, No. 14, 4196-4207 (2016). MSC: 35B65 76A15 35Q35 35D30 PDF BibTeX XML Cite \textit{H. Yu}, Math. Methods Appl. Sci. 39, No. 14, 4196--4207 (2016; Zbl 1347.35060) Full Text: DOI
Koh, Youngwoo; Yang, Minsuk The Minkowski dimension of interior singular points in the incompressible Navier-Stokes equations. (English) Zbl 1351.35104 J. Differ. Equations 261, No. 6, 3137-3148 (2016). Reviewer: Il’ya Sh. Mogilevskii (Tver’) MSC: 35Q30 76D05 35D30 35B65 PDF BibTeX XML Cite \textit{Y. Koh} and \textit{M. Yang}, J. Differ. Equations 261, No. 6, 3137--3148 (2016; Zbl 1351.35104) Full Text: DOI arXiv
Chae, Dongho; Wolf, Jörg On partial regularity for the 3D nonstationary Hall magnetohydrodynamics equations on the plane. (English) Zbl 1336.35287 SIAM J. Math. Anal. 48, No. 1, 443-469 (2016). Reviewer: Thomas Ernst (Uppsala) MSC: 35Q35 35Q85 76W05 85A30 35D30 PDF BibTeX XML Cite \textit{D. Chae} and \textit{J. Wolf}, SIAM J. Math. Anal. 48, No. 1, 443--469 (2016; Zbl 1336.35287) Full Text: DOI arXiv
Choe, Hi Jun; Yang, Minsuk Hausdorff measure of boundary singular points in the magnetohydrodynamic equations. (English) Zbl 1332.35057 J. Differ. Equations 260, No. 4, 3380-3396 (2016). MSC: 35B65 76W05 35D30 PDF BibTeX XML Cite \textit{H. J. Choe} and \textit{M. Yang}, J. Differ. Equations 260, No. 4, 3380--3396 (2016; Zbl 1332.35057) Full Text: DOI
Phuc, Nguyen Cong The Navier-Stokes equations in nonendpoint borderline Lorentz spaces. (English) Zbl 1326.35249 J. Math. Fluid Mech. 17, No. 4, 741-760 (2015). MSC: 35Q30 PDF BibTeX XML Cite \textit{N. C. Phuc}, J. Math. Fluid Mech. 17, No. 4, 741--760 (2015; Zbl 1326.35249) Full Text: DOI arXiv
Chae, Dongho; Wolf, Jörg On partial regularity for the steady Hall magnetohydrodynamics system. (English) Zbl 1328.35165 Commun. Math. Phys. 339, No. 3, 1147-1166 (2015). Reviewer: Bernard Ducomet (Bruyères le Châtel) MSC: 35Q35 76W05 35B65 35D30 PDF BibTeX XML Cite \textit{D. Chae} and \textit{J. Wolf}, Commun. Math. Phys. 339, No. 3, 1147--1166 (2015; Zbl 1328.35165) Full Text: DOI arXiv
Ren, Wei; Wu, Gang Partial regularity for the 3D magneto-hydrodynamics system with hyper-dissipation. (English) Zbl 1320.35129 Acta Math. Sin., Engl. Ser. 31, No. 7, 1097-1112 (2015). MSC: 35B65 35A27 35Q30 35R11 76W05 PDF BibTeX XML Cite \textit{W. Ren} and \textit{G. Wu}, Acta Math. Sin., Engl. Ser. 31, No. 7, 1097--1112 (2015; Zbl 1320.35129) Full Text: DOI
Wolf, Jörg On the local regularity of suitable weak solutions to the generalized Navier-Stokes equations. (English) Zbl 1323.35135 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 61, No. 1, 149-171 (2015). Reviewer: Gheorghe Moroşanu (Budapest) MSC: 35Q30 76D05 35B65 76N10 76A05 PDF BibTeX XML Cite \textit{J. Wolf}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 61, No. 1, 149--171 (2015; Zbl 1323.35135) Full Text: DOI
Gu, Xumin Regularity criteria for suitable weak solutions to the four dimensional incompressible magneto-hydrodynamic equations near boundary. (English) Zbl 1317.35198 J. Differ. Equations 259, No. 4, 1354-1378 (2015). MSC: 35Q35 76W05 35B65 28A78 PDF BibTeX XML Cite \textit{X. Gu}, J. Differ. Equations 259, No. 4, 1354--1378 (2015; Zbl 1317.35198) Full Text: DOI arXiv
Jiu, Quansen; Wang, Yanqing Remarks on partial regularity for suitable weak solutions of the incompressible magnetohydrodynamic equations. (English) Zbl 1306.35096 J. Math. Anal. Appl. 409, No. 2, 1052-1065 (2014). MSC: 35Q35 35B65 35D30 PDF BibTeX XML Cite \textit{Q. Jiu} and \textit{Y. Wang}, J. Math. Anal. Appl. 409, No. 2, 1052--1065 (2014; Zbl 1306.35096) Full Text: DOI
Vialov, V. On the regularity of weak solutions to the MHD system near the boundary. (English) Zbl 1308.35228 J. Math. Fluid Mech. 16, No. 4, 745-769 (2014). MSC: 35Q35 76W05 35B65 35D30 PDF BibTeX XML Cite \textit{V. Vialov}, J. Math. Fluid Mech. 16, No. 4, 745--769 (2014; Zbl 1308.35228) Full Text: DOI
Kang, Kyungkeun; Kim, Jae-Myoung Boundary regularity criteria for suitable weak solutions of the magnetohydrodynamic equations. (English) Zbl 1299.35236 J. Funct. Anal. 266, No. 1, 99-120 (2014). MSC: 35Q35 76W05 PDF BibTeX XML Cite \textit{K. Kang} and \textit{J.-M. Kim}, J. Funct. Anal. 266, No. 1, 99--120 (2014; Zbl 1299.35236) Full Text: DOI arXiv
Neustupa, Jiří A refinement of the local Serrin-type regularity criterion for a suitable weak solution to the Navier-Stokes equations. (English) Zbl 1304.35502 Arch. Ration. Mech. Anal. 214, No. 2, 525-544 (2014). Reviewer: Cheng He (Beijing) MSC: 35Q30 35D30 76D05 35B65 PDF BibTeX XML Cite \textit{J. Neustupa}, Arch. Ration. Mech. Anal. 214, No. 2, 525--544 (2014; Zbl 1304.35502) Full Text: DOI arXiv
Wang, Wendong; Zhang, Zhifei On the interior regularity criteria and the number of singular points to the Navier-Stokes equations. (English) Zbl 1304.35510 J. Anal. Math. 123, 139-170 (2014). MSC: 35Q30 35B65 35D30 76D05 PDF BibTeX XML Cite \textit{W. Wang} and \textit{Z. Zhang}, J. Anal. Math. 123, 139--170 (2014; Zbl 1304.35510) Full Text: DOI arXiv
Dong, Hongjie; Gu, Xumin Boundary partial regularity for the high dimensional Navier-Stokes equations. (English) Zbl 1300.35070 J. Funct. Anal. 267, No. 8, 2606-2637 (2014). MSC: 35Q30 35B65 76D05 35D30 28A78 PDF BibTeX XML Cite \textit{H. Dong} and \textit{X. Gu}, J. Funct. Anal. 267, No. 8, 2606--2637 (2014; Zbl 1300.35070) Full Text: DOI arXiv
Burczak, Jan Almost everywhere Hölder continuity of gradients to non-diagonal parabolic systems. (English) Zbl 1293.35065 Manuscr. Math. 144, No. 1-2, 51-90 (2014). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B65 35K55 35K92 35K40 PDF BibTeX XML Cite \textit{J. Burczak}, Manuscr. Math. 144, No. 1--2, 51--90 (2014; Zbl 1293.35065) Full Text: DOI arXiv
Jia, Hao; Šverák, Vladimír Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions. (English) Zbl 1301.35089 Invent. Math. 196, No. 1, 233-265 (2014). Reviewer: Pavel Burda (Praha) MSC: 35Q30 35D30 35B65 76D05 76D03 PDF BibTeX XML Cite \textit{H. Jia} and \textit{V. Šverák}, Invent. Math. 196, No. 1, 233--265 (2014; Zbl 1301.35089) Full Text: DOI arXiv
Wang, Yanqing; Wu, Gang A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations. (English) Zbl 1283.35069 J. Differ. Equations 256, No. 3, 1224-1249 (2014). MSC: 35Q30 35Q35 76D05 76B03 35D30 35B65 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{G. Wu}, J. Differ. Equations 256, No. 3, 1224--1249 (2014; Zbl 1283.35069) Full Text: DOI
Seregin, Gregory Selected topics of local regularity theory for Navier-Stokes equations. (English) Zbl 1301.35094 Flandoli, Franco (ed.) et al., Topics in mathematical fluid mechanics. Notes of the CIME course, Cetraro, Italy, September 2010. Berlin: Springer; Florence: Fondazione CIME (ISBN 978-3-642-36296-5/pbk; 978-3-642-36297-2/ebook). Lecture Notes in Mathematics 2073. CIME Foundation Subseries, 239-313 (2013). MSC: 35Q30 76D03 35B65 35D30 PDF BibTeX XML Cite \textit{G. Seregin}, Lect. Notes Math. 2073, 239--313 (2013; Zbl 1301.35094) Full Text: DOI
Rusin, Walter Incompressible 3D Navier-Stokes equations as a limit of a nonlinear parabolic system. (English) Zbl 1294.35073 J. Math. Fluid Mech. 14, No. 2, 383-405 (2012). MSC: 35Q30 76D03 PDF BibTeX XML Cite \textit{W. Rusin}, J. Math. Fluid Mech. 14, No. 2, 383--405 (2012; Zbl 1294.35073) Full Text: DOI
Seregin, G. A note on bounded scale-invariant quantities for the Navier-Stokes equations. (English. Russian original) Zbl 1261.35112 J. Math. Sci., New York 185, No. 5, 742-745 (2012); translation from Zap. Nauchn. Semin. POMI 397, 150-156 (2011). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{G. Seregin}, J. Math. Sci., New York 185, No. 5, 742--745 (2012; Zbl 1261.35112); translation from Zap. Nauchn. Semin. POMI 397, 150--156 (2011) Full Text: DOI
Han, Pigong Interior regularity of weak solutions to the perturbed Navier-Stokes equations. (English) Zbl 1265.35246 Appl. Math., Praha 57, No. 5, 427-444 (2012). Reviewer: Jiří Neústupa (Praha) MSC: 35Q30 76D05 35B65 PDF BibTeX XML Cite \textit{P. Han}, Appl. Math., Praha 57, No. 5, 427--444 (2012; Zbl 1265.35246) Full Text: DOI Link
Han, Pigong; He, Cheng Partial regularity of suitable weak solutions to the four-dimensional incompressible magneto-hydrodynamic equations. (English) Zbl 1256.35081 Math. Methods Appl. Sci. 35, No. 11, 1335-1355 (2012). MSC: 35Q35 35D30 35B65 PDF BibTeX XML Cite \textit{P. Han} and \textit{C. He}, Math. Methods Appl. Sci. 35, No. 11, 1335--1355 (2012; Zbl 1256.35081) Full Text: DOI
Wang, Wendong; Zhang, Zhifei Regularity of weak solutions for the Navier-Stokes equations in the class \(L^\infty \)(BMO\(^{-1}\)). (English) Zbl 1251.35012 Commun. Contemp. Math. 14, No. 3, 1250020, 24 p. (2012). Reviewer: Luisa Consiglieri (Lisboa) MSC: 35B65 76D05 35Q30 PDF BibTeX XML Cite \textit{W. Wang} and \textit{Z. Zhang}, Commun. Contemp. Math. 14, No. 3, 1250020, 24 p. (2012; Zbl 1251.35012) Full Text: DOI
Kang, Kyungkeun; Kim, Jae-Myoung Regularity criteria of the magnetohydrodynamic equations in bounded domains or a half space. (English) Zbl 1308.35218 J. Differ. Equations 253, No. 2, 764-794 (2012). MSC: 35Q35 35B65 76W05 PDF BibTeX XML Cite \textit{K. Kang} and \textit{J.-M. Kim}, J. Differ. Equations 253, No. 2, 764--794 (2012; Zbl 1308.35218) Full Text: DOI