Hounnan, Semedeton Olivier; Miwadinou, Clement H.; Monwanou, Vincent A. Nonlinear dynamics of a nonlinear damping gyroscope and its passive control. (English) Zbl 07681676 J. Control Sci. Eng. 2023, Article ID 2036300, 17 p. (2023). MSC: 93D05 93C10 93C80 PDF BibTeX XML Cite \textit{S. O. Hounnan} et al., J. Control Sci. Eng. 2023, Article ID 2036300, 17 p. (2023; Zbl 07681676) Full Text: DOI OpenURL
Surosh, A. H.; Khoshsiar Ghaziani, R.; Alidousti, J. Chaos control and Hopf bifurcation analysis of a three-dimensional chaotic system. (English) Zbl 07680442 J. Mahani Math. Res. Cent. 12, No. 1, 183-195 (2023). MSC: 34D05 37G10 37G15 PDF BibTeX XML Cite \textit{A. H. Surosh} et al., J. Mahani Math. Res. Cent. 12, No. 1, 183--195 (2023; Zbl 07680442) Full Text: DOI OpenURL
Costa, Dimitri; Vaziri, Vahid; Pavlovskaia, Ekaterina; Savi, Marcelo A.; Wiercigroch, Marian Switching between periodic orbits in impact oscillator by time-delayed feedback methods. (English) Zbl 07639106 Physica D 443, Article ID 133587, 14 p. (2023). MSC: 37N35 34H05 34H10 34H15 93B52 PDF BibTeX XML Cite \textit{D. Costa} et al., Physica D 443, Article ID 133587, 14 p. (2023; Zbl 07639106) Full Text: DOI OpenURL
Singh, Anuraj; Sharma, Vijay Shankar Bifurcations and chaos control in a discrete-time prey-predator model with Holling type-II functional response and prey refuge. (English) Zbl 1500.92096 J. Comput. Appl. Math. 418, Article ID 114666, 21 p. (2023). MSC: 92D25 34H10 34H20 PDF BibTeX XML Cite \textit{A. Singh} and \textit{V. S. Sharma}, J. Comput. Appl. Math. 418, Article ID 114666, 21 p. (2023; Zbl 1500.92096) Full Text: DOI OpenURL
Samia, Rezzag Chaos synchronization of the 4D hyperchaotic Lorenz Stenflo system. (English) Zbl 1504.65276 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 29, No. 5, 391-397 (2022). MSC: 65P20 65P30 65P40 PDF BibTeX XML Cite \textit{R. Samia}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 29, No. 5, 391--397 (2022; Zbl 1504.65276) Full Text: Link OpenURL
Zhao, Liuwei; Jiang, Hongyun Dynamic analysis and chaos control for a NEV enterprise and a competitive TeV enterprise under the CAFC-NEV mandate. (English) Zbl 1505.90030 Discrete Dyn. Nat. Soc. 2022, Article ID 9636769, 15 p. (2022). MSC: 90B06 91B54 PDF BibTeX XML Cite \textit{L. Zhao} and \textit{H. Jiang}, Discrete Dyn. Nat. Soc. 2022, Article ID 9636769, 15 p. (2022; Zbl 1505.90030) Full Text: DOI OpenURL
González, Graciela Adriana; Nielsen, Christopher; Bortoff, Zachary Attractivity of unstable equilibria for a controlled Chen system via small output feedback. (English) Zbl 07646400 Chaos Solitons Fractals 164, Article ID 112642, 9 p. (2022). MSC: 93C10 93C15 93C40 34H10 34H05 PDF BibTeX XML Cite \textit{G. A. González} et al., Chaos Solitons Fractals 164, Article ID 112642, 9 p. (2022; Zbl 07646400) Full Text: DOI OpenURL
Zheng, Y. G.; Yu, J. L. Stabilization of multi-rotation unstable periodic orbits through dynamic extended delayed feedback control. (English) Zbl 1504.93301 Chaos Solitons Fractals 161, Article ID 112362, 7 p. (2022). MSC: 93D15 93B52 93C10 34H10 34H05 PDF BibTeX XML Cite \textit{Y. G. Zheng} and \textit{J. L. Yu}, Chaos Solitons Fractals 161, Article ID 112362, 7 p. (2022; Zbl 1504.93301) Full Text: DOI OpenURL
Khan, Muhammad Salman Bifurcation analysis of a discrete-time four-dimensional cubic autocatalator chemical reaction model with coupling through uncatalysed reactant. (English) Zbl 1505.92315 MATCH Commun. Math. Comput. Chem. 87, No. 2, 415-439 (2022). MSC: 92E20 34C23 34H10 PDF BibTeX XML Cite \textit{M. S. Khan}, MATCH Commun. Math. Comput. Chem. 87, No. 2, 415--439 (2022; Zbl 1505.92315) Full Text: DOI OpenURL
Zheng, Yuan-Guang; Liu, Ming-Huan Stabilizing unstable periodic orbits in large stability domains with dynamic time-delayed feedback control. (English) Zbl 1501.93115 J. Franklin Inst. 359, No. 16, 8484-8496 (2022). MSC: 93D15 93C15 34H10 93C10 PDF BibTeX XML Cite \textit{Y.-G. Zheng} and \textit{M.-H. Liu}, J. Franklin Inst. 359, No. 16, 8484--8496 (2022; Zbl 1501.93115) Full Text: DOI OpenURL
Zheng, Hang; Xia, Yonghui; Pinto, Manuel Chaotic motion and control of the driven-damped double sine-Gordon equation. (English) Zbl 1505.34065 Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7151-7167 (2022). MSC: 34C28 34C37 34H10 65P20 35L10 35C07 37J40 PDF BibTeX XML Cite \textit{H. Zheng} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7151--7167 (2022; Zbl 1505.34065) Full Text: DOI OpenURL
Khan, Muhammad Salman; Samreen, Maria; Ozair, Muhammad; Hussain, Takasar; Elsayed, E. M.; Gómez-Aguilar, J. F. On the qualitative study of a two-trophic plant-herbivore model. (English) Zbl 1498.92303 J. Math. Biol. 85, No. 4, Paper No. 34, 35 p. (2022). MSC: 92D40 34C23 PDF BibTeX XML Cite \textit{M. S. Khan} et al., J. Math. Biol. 85, No. 4, Paper No. 34, 35 p. (2022; Zbl 1498.92303) Full Text: DOI OpenURL
Dousseh, P. Y.; Hinvi, L. A.; Miwadinou, C. H.; Monwanou, A. V.; Chabi Orou, J. B. Chaos and its control in a fractional order glucose-insulin regulatory system. (English) Zbl 1498.92047 J. Appl. Nonlinear Dyn. 11, No. 4, 877-895 (2022). MSC: 92C30 34A08 34H10 93C40 93B12 93B52 PDF BibTeX XML Cite \textit{P. Y. Dousseh} et al., J. Appl. Nonlinear Dyn. 11, No. 4, 877--895 (2022; Zbl 1498.92047) Full Text: DOI OpenURL
Kangalgil, Figen; Topsakal, Nilüfer; Öztürk, Nihal Analyzing bifurcation, stability, and chaos control for a discrete-time prey-predator model with Allee effect. (English) Zbl 07581972 Turk. J. Math. 46, No. 6, 2047-2068 (2022). Reviewer: Carlos A. dos Santos Braumann (Évora) MSC: 92D25 39A60 39A28 39A30 39A33 PDF BibTeX XML Cite \textit{F. Kangalgil} et al., Turk. J. Math. 46, No. 6, 2047--2068 (2022; Zbl 07581972) Full Text: DOI OpenURL
Yadav, Vijay K.; Prasad, Ghanshyam; Srivastava, Mayank; Das, Subir Triple compound synchronization among eight chaotic systems with external disturbances via nonlinear approach. (English) Zbl 1501.37093 Differ. Equ. Dyn. Syst. 30, No. 3, 549-572 (2022). MSC: 37N35 34H05 34H10 93D05 PDF BibTeX XML Cite \textit{V. K. Yadav} et al., Differ. Equ. Dyn. Syst. 30, No. 3, 549--572 (2022; Zbl 1501.37093) Full Text: DOI OpenURL
Gonzalez Montoya, Francisco; Jung, Christof The numerical search for the internal dynamics of NHIMs and their pictorial representation. (English) Zbl 07548979 Physica D 436, Article ID 133330, 11 p. (2022). MSC: 37M21 37D10 PDF BibTeX XML Cite \textit{F. Gonzalez Montoya} and \textit{C. Jung}, Physica D 436, Article ID 133330, 11 p. (2022; Zbl 07548979) Full Text: DOI arXiv OpenURL
Piccirillo, Vinícius Control of homoclinic bifurcation in two-dimensional dynamical systems by a feedback law based on \(L^p\) spaces. (English) Zbl 1491.93042 J. Franklin Inst. 359, No. 10, 5097-5124 (2022). MSC: 93B52 37C29 PDF BibTeX XML Cite \textit{V. Piccirillo}, J. Franklin Inst. 359, No. 10, 5097--5124 (2022; Zbl 1491.93042) Full Text: DOI OpenURL
Su, Haipeng; Luo, Runzi; Fu, Jiaojiao; Huang, Meichun Fixed time control and synchronization of a class of uncertain chaotic systems with disturbances via passive control method. (English) Zbl 07529673 Math. Comput. Simul. 198, 474-493 (2022). MSC: 93-XX 37-XX PDF BibTeX XML Cite \textit{H. Su} et al., Math. Comput. Simul. 198, 474--493 (2022; Zbl 07529673) Full Text: DOI OpenURL
Işik, Seval; Kangalgil, Figen On the analysis of stability, bifurcation, and chaos control of discrete-time predator-prey model with Allee effect on predator. (English) Zbl 1499.39071 Hacet. J. Math. Stat. 51, No. 2, 404-420 (2022). MSC: 39A28 39A30 39A60 92D25 PDF BibTeX XML Cite \textit{S. Işik} and \textit{F. Kangalgil}, Hacet. J. Math. Stat. 51, No. 2, 404--420 (2022; Zbl 1499.39071) Full Text: DOI OpenURL
Zhou, Shijie; Lai, Ying-Cheng; Lin, Wei Stochastically adaptive control and synchronization: from globally one-sided Lipschitzian to only locally Lipschitzian systems. (English) Zbl 1492.60182 SIAM J. Appl. Dyn. Syst. 21, No. 2, 932-959 (2022). MSC: 60H10 34F05 93E99 PDF BibTeX XML Cite \textit{S. Zhou} et al., SIAM J. Appl. Dyn. Syst. 21, No. 2, 932--959 (2022; Zbl 1492.60182) Full Text: DOI OpenURL
Xiang, Qiaomin; Zhu, Pengxian; Wu, Chufen Chaos analysis for a class of hyperbolic equations with nonlinear boundary conditions. (English) Zbl 1490.35222 Appl. Anal. 101, No. 4, 1383-1395 (2022). MSC: 35L20 35L05 PDF BibTeX XML Cite \textit{Q. Xiang} et al., Appl. Anal. 101, No. 4, 1383--1395 (2022; Zbl 1490.35222) Full Text: DOI OpenURL
Zheng, Jing; Zhang, Qiongxin; Xu, Qi; Xu, Fei; Shi, Victor Synchronization of a supply chain model with four chaotic attractors. (English) Zbl 1490.90079 Discrete Dyn. Nat. Soc. 2022, Article ID 6390456, 9 p. (2022). MSC: 90B06 37D45 34C28 PDF BibTeX XML Cite \textit{J. Zheng} et al., Discrete Dyn. Nat. Soc. 2022, Article ID 6390456, 9 p. (2022; Zbl 1490.90079) Full Text: DOI OpenURL
Sekman, Derya; Karakaya, Vatan Controlling chaos for multistep iteration process and its special iterations in discrete dynamical systems. (English) Zbl 07491260 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 2, Article ID 2250020, 17 p. (2022). MSC: 47Hxx 37Dxx 37Nxx PDF BibTeX XML Cite \textit{D. Sekman} and \textit{V. Karakaya}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 2, Article ID 2250020, 17 p. (2022; Zbl 07491260) Full Text: DOI OpenURL
Siettos, Constantinos; Russo, Lucia A numerical method for the approximation of stable and unstable manifolds of microscopic simulators. (English) Zbl 1491.65162 Numer. Algorithms 89, No. 3, 1335-1368 (2022). MSC: 65P40 37M05 PDF BibTeX XML Cite \textit{C. Siettos} and \textit{L. Russo}, Numer. Algorithms 89, No. 3, 1335--1368 (2022; Zbl 1491.65162) Full Text: DOI arXiv OpenURL
Zhang, Zhi; Páez Chávez, Joseph; Sieber, Jan; Liu, Yang Controlling coexisting attractors of a class of non-autonomous dynamical systems. (English) Zbl 1497.37119 Physica D 431, Article ID 133134, 16 p. (2022). Reviewer: Petro Feketa (Kiel) MSC: 37N35 34C15 37C70 93C15 93B51 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Physica D 431, Article ID 133134, 16 p. (2022; Zbl 1497.37119) Full Text: DOI arXiv OpenURL
Kalabušić, S.; Pilav, E. Bifurcations, permanence and local behavior of the plant-herbivore model with logistic growth of plant biomass. (English) Zbl 1482.39024 Qual. Theory Dyn. Syst. 21, No. 2, Paper No. 26, 45 p. (2022). MSC: 39A60 39A28 39A30 92D25 92D40 PDF BibTeX XML Cite \textit{S. Kalabušić} and \textit{E. Pilav}, Qual. Theory Dyn. Syst. 21, No. 2, Paper No. 26, 45 p. (2022; Zbl 1482.39024) Full Text: DOI OpenURL
Poignard, Camille Self-induced synchronization by large delay. (English) Zbl 1493.37031 J. Differ. Equations 310, 555-601 (2022). Reviewer: Serhiy Yanchuk (Berlin) MSC: 37D10 34K19 34K35 PDF BibTeX XML Cite \textit{C. Poignard}, J. Differ. Equations 310, 555--601 (2022; Zbl 1493.37031) Full Text: DOI HAL OpenURL
Stoop, Ruedi Stable periodic economic cycles from controlling. (English) Zbl 1504.91171 Orlando, Giuseppe (ed.) et al., Nonlinearities in economics. An interdisciplinary approach to economic dynamics, growth and cycles. Cham: Springer. Dyn. Model. Econom. Econ. Finance 29, 209-244 (2021). MSC: 91B62 PDF BibTeX XML Cite \textit{R. Stoop}, Dyn. Model. Econom. Econ. Finance 29, 209--244 (2021; Zbl 1504.91171) Full Text: DOI OpenURL
Volos, Christos; Maaita, Jamal-Odysseas; Viet-Thanh Pham; Jafari, Sajad Hidden attractors in a dynamical system with a sine function. (English) Zbl 1507.37050 Wang, Xiong (ed.) et al., Chaotic systems with multistability and hidden attractors. Cham: Springer. Emerg. Complex. Comput. 40, 459-487 (2021). MSC: 37D45 34C28 PDF BibTeX XML Cite \textit{C. Volos} et al., Emerg. Complex. Comput. 40, 459--487 (2021; Zbl 1507.37050) Full Text: DOI OpenURL
Zelinka, Ivan Unconventional algorithms and hidden chaotic attractors. (English) Zbl 07606441 Wang, Xiong (ed.) et al., Chaotic systems with multistability and hidden attractors. Cham: Springer. Emerg. Complex. Comput. 40, 429-457 (2021). MSC: 68W50 37M99 PDF BibTeX XML Cite \textit{I. Zelinka}, Emerg. Complex. Comput. 40, 429--457 (2021; Zbl 07606441) Full Text: DOI OpenURL
Wu, Jie; Xu, Wei; Wang, Xiaofeng; Ma, Ru-ru Stochastic adaptive fixed-time stabilization of chaotic systems with applications in PMSM and FWS. (English) Zbl 1498.93767 Chaos Solitons Fractals 153, Part 2, Article ID 111582, 8 p. (2021). MSC: 93E15 34H10 60H10 93D21 PDF BibTeX XML Cite \textit{J. Wu} et al., Chaos Solitons Fractals 153, Part 2, Article ID 111582, 8 p. (2021; Zbl 1498.93767) Full Text: DOI OpenURL
Akhtar, S.; Ahmed, R.; Batool, M.; Shah, Nehad Ali; Chung, Jae Dong Stability, bifurcation and chaos control of a discretized Leslie prey-predator model. (English) Zbl 1498.92142 Chaos Solitons Fractals 152, Article ID 111345, 10 p. (2021). MSC: 92D25 34H10 34C23 34D20 PDF BibTeX XML Cite \textit{S. Akhtar} et al., Chaos Solitons Fractals 152, Article ID 111345, 10 p. (2021; Zbl 1498.92142) Full Text: DOI OpenURL
Ngamsa Tegnitsap, J. V.; Fotsin, H. B.; Megam Ngouonkadi, E. B. Magnetic coupling based control of a chaotic circuit: case of the van der Pol oscillator coupled to a linear circuit. (English) Zbl 1496.78010 Chaos Solitons Fractals 152, Article ID 111319, 35 p. (2021). MSC: 78A55 78A30 78-05 65L06 35B41 35B32 93C20 94C05 PDF BibTeX XML Cite \textit{J. V. Ngamsa Tegnitsap} et al., Chaos Solitons Fractals 152, Article ID 111319, 35 p. (2021; Zbl 1496.78010) Full Text: DOI OpenURL
Khan, Muhammad Salman; Samreen, Maria; Aydi, Hassen; de la Sen, Manuel Qualitative analysis of a discrete-time phytoplankton-zooplankton model with Holling type-II response and toxicity. (English) Zbl 1494.92163 Adv. Difference Equ. 2021, Paper No. 443, 29 p. (2021). MSC: 92D40 92D25 37N25 PDF BibTeX XML Cite \textit{M. S. Khan} et al., Adv. Difference Equ. 2021, Paper No. 443, 29 p. (2021; Zbl 1494.92163) Full Text: DOI OpenURL
Nirvin, P.; Rakkiyappan, R. Synchronization of T-S fuzzy sampled-data controller for H-R neuron model with delay using a new looped-functional. (English) Zbl 1494.93066 Discontin. Nonlinearity Complex. 10, No. 2, 259-273 (2021). MSC: 93C42 93C57 92C20 93C43 PDF BibTeX XML Cite \textit{P. Nirvin} and \textit{R. Rakkiyappan}, Discontin. Nonlinearity Complex. 10, No. 2, 259--273 (2021; Zbl 1494.93066) Full Text: DOI OpenURL
Khalili, Amirabadi R.; Fard, O. S.; Mansoori, A. A novel fuzzy sliding mode control approach for chaotic systems. (English) Zbl 1505.93135 Iran. J. Fuzzy Syst. 18, No. 6, 133-150 (2021). MSC: 93C42 93B12 37D45 PDF BibTeX XML Cite \textit{A. R. Khalili} et al., Iran. J. Fuzzy Syst. 18, No. 6, 133--150 (2021; Zbl 1505.93135) Full Text: DOI OpenURL
Astakhov, Sergey; Astakhov, Oleg; Fadeeva, Natalia; Astakhov, Vladimir Multistability, quasiperiodicity and chaos in a self-oscillating ring dynamical system with three degrees of freedom based on the van der Pol generator. (English) Zbl 1485.34132 Chaos Solitons Fractals 148, Article ID 110978, 8 p. (2021). MSC: 34C60 34C28 34C23 PDF BibTeX XML Cite \textit{S. Astakhov} et al., Chaos Solitons Fractals 148, Article ID 110978, 8 p. (2021; Zbl 1485.34132) Full Text: DOI OpenURL
Shi, Lin; Zhang, Chunmei; Zhong, Shouming Synchronization of singular complex networks with time-varying delay via pinning control and linear feedback control. (English) Zbl 1498.34148 Chaos Solitons Fractals 145, Article ID 110805, 11 p. (2021). MSC: 34D06 34H05 37N35 93B52 93C43 93D05 PDF BibTeX XML Cite \textit{L. Shi} et al., Chaos Solitons Fractals 145, Article ID 110805, 11 p. (2021; Zbl 1498.34148) Full Text: DOI OpenURL
Long, Jianjun; Zhao, Hua Stability of equilibrium prices in a dynamic duopoly Bertrand game with asymmetric information and cluster spillovers. (English) Zbl 1484.91272 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 16, Article ID 2150240, 20 p. (2021). MSC: 91B54 91A80 PDF BibTeX XML Cite \textit{J. Long} and \textit{H. Zhao}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 16, Article ID 2150240, 20 p. (2021; Zbl 1484.91272) Full Text: DOI OpenURL
Han, Yanyan; Ding, Jianpeng; Du, Lin; Lei, Youming Control and anti-control of chaos based on the moving largest Lyapunov exponent using reinforcement learning. (English) Zbl 07479409 Physica D 428, Article ID 133068, 12 p. (2021). MSC: 68-XX 37-XX PDF BibTeX XML Cite \textit{Y. Han} et al., Physica D 428, Article ID 133068, 12 p. (2021; Zbl 07479409) Full Text: DOI OpenURL
Bramburger, Jason J.; Brunton, Steven L.; Nathan Kutz, J. Deep learning of conjugate mappings. (English) Zbl 1491.37074 Physica D 427, Article ID 133008, 16 p. (2021). MSC: 37M25 37C15 37D45 65P20 PDF BibTeX XML Cite \textit{J. J. Bramburger} et al., Physica D 427, Article ID 133008, 16 p. (2021; Zbl 1491.37074) Full Text: DOI arXiv OpenURL
Pal, Pikaso; Mukherjee, V.; Alemayehu, Hinsermu; Jin, Gang Gyoo; Feyisa, Gosa Generalized adaptive backstepping sliding mode control for synchronizing chaotic systems with uncertainties and disturbances. (English) Zbl 07431544 Math. Comput. Simul. 190, 793-807 (2021). MSC: 93-XX 37-XX PDF BibTeX XML Cite \textit{P. Pal} et al., Math. Comput. Simul. 190, 793--807 (2021; Zbl 07431544) Full Text: DOI OpenURL
Cheffer, Augusto; Savi, Marcelo A.; Pereira, Tiago Leite; de Paula, Aline Souza Heart rhythm analysis using a nonlinear dynamics perspective. (English) Zbl 1481.92032 Appl. Math. Modelling 96, 152-176 (2021). MSC: 92C30 92B25 34C15 PDF BibTeX XML Cite \textit{A. Cheffer} et al., Appl. Math. Modelling 96, 152--176 (2021; Zbl 1481.92032) Full Text: DOI OpenURL
Thompson, J. Michael T. A bracing nonlinear walk in applied mechanics: memoirs and reflections. (English) Zbl 1504.74036 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 12, Article ID 2130035, 39 p. (2021). MSC: 74H60 74H65 74G60 70K50 01A70 PDF BibTeX XML Cite \textit{J. M. T. Thompson}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 12, Article ID 2130035, 39 p. (2021; Zbl 1504.74036) Full Text: DOI OpenURL
Raju, Thokala Soloman Nonlinear Lorentzian-type standing wave solutions of ac-driven sine-Gordon equation. (English) Zbl 07412643 Phys. Lett., A 414, Article ID 127623, 4 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{T. S. Raju}, Phys. Lett., A 414, Article ID 127623, 4 p. (2021; Zbl 07412643) Full Text: DOI OpenURL
Chang, Shun-Chang Bifurcation, routes to chaos, and synchronized chaos of electromagnetic valve train in camless engines. (English) Zbl 07412249 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 3-4, 447-460 (2021). MSC: 37-XX 93-XX PDF BibTeX XML Cite \textit{S.-C. Chang}, Int. J. Nonlinear Sci. Numer. Simul. 22, No. 3--4, 447--460 (2021; Zbl 07412249) Full Text: DOI OpenURL
Ma, Xiaogang; Bao, Chunyu; Yu, Niu; Xie, Jing Leader selection and dynamics analysis under leader-based collective bargaining for buyers’ alliance. (English) Zbl 1471.91187 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 10, Article ID 2150156, 21 p. (2021). MSC: 91B26 91A80 90B06 37G10 35Q91 PDF BibTeX XML Cite \textit{X. Ma} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 10, Article ID 2150156, 21 p. (2021; Zbl 1471.91187) Full Text: DOI OpenURL
Din, Qamar; Yousef, A. M.; Elsadany, A. A. Stability and bifurcation analysis of a discrete singular bioeconomic system. (English) Zbl 1471.92249 Discrete Dyn. Nat. Soc. 2021, Article ID 6679161, 22 p. (2021). MSC: 92D25 PDF BibTeX XML Cite \textit{Q. Din} et al., Discrete Dyn. Nat. Soc. 2021, Article ID 6679161, 22 p. (2021; Zbl 1471.92249) Full Text: DOI OpenURL
Din, Qamar; Khan, Muhammad Irfan A discrete-time model for consumer-resource interaction with stability, bifurcation and chaos control. (English) Zbl 1471.39017 Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 56, 35 p. (2021). MSC: 39A60 39A30 39A28 92D40 PDF BibTeX XML Cite \textit{Q. Din} and \textit{M. I. Khan}, Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 56, 35 p. (2021; Zbl 1471.39017) Full Text: DOI OpenURL
Segura, Juan Intervention time in target-oriented chaos control. (English) Zbl 1470.92261 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 9, Article ID 2150134, 16 p. (2021). MSC: 92D25 39A30 39A33 PDF BibTeX XML Cite \textit{J. Segura}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 9, Article ID 2150134, 16 p. (2021; Zbl 1470.92261) Full Text: DOI OpenURL
Feng, Guo; Yin, Ding; Jiacheng, Li Neimark-Sacker bifurcation and controlling chaos in a three-species food chain model through the OGY method. (English) Zbl 1471.92251 Discrete Dyn. Nat. Soc. 2021, Article ID 6316235, 13 p. (2021). MSC: 92D25 34C23 PDF BibTeX XML Cite \textit{G. Feng} et al., Discrete Dyn. Nat. Soc. 2021, Article ID 6316235, 13 p. (2021; Zbl 1471.92251) Full Text: DOI OpenURL
Arian, Ghasem; Taghvaei, Sajjad Dynamic analysis and chaos control of spur gear transmission system with idler. (English) Zbl 1485.74037 Eur. J. Mech., A, Solids 87, Article ID 104229, 14 p. (2021). MSC: 74H60 74H65 70K50 70K55 PDF BibTeX XML Cite \textit{G. Arian} and \textit{S. Taghvaei}, Eur. J. Mech., A, Solids 87, Article ID 104229, 14 p. (2021; Zbl 1485.74037) Full Text: DOI OpenURL
Zhou, Zi-Xuan; Ren, Hai-Peng; Grebogi, Celso Bi-directional impulse chaos control in crystal growth. (English) Zbl 1462.34065 Chaos 31, No. 5, 053106, 9 p. (2021). MSC: 34C15 34H10 34C60 34A37 PDF BibTeX XML Cite \textit{Z.-X. Zhou} et al., Chaos 31, No. 5, 053106, 9 p. (2021; Zbl 1462.34065) Full Text: DOI Link OpenURL
Hansen, Roberta; González, Graciela A. Feedback control modulation for controlling chaotic maps. (English) Zbl 1469.93034 Nonlinear Anal., Model. Control 26, No. 3, 419-439 (2021). MSC: 93B52 93C43 34H10 PDF BibTeX XML Cite \textit{R. Hansen} and \textit{G. A. González}, Nonlinear Anal., Model. Control 26, No. 3, 419--439 (2021; Zbl 1469.93034) Full Text: DOI OpenURL
Zheng, Yuan-Guang; Zhang, Ying-Ying Enlarging the stable domain of controlled high-period oscillations with transient extended delayed feedback control. (English) Zbl 1464.93061 Commun. Nonlinear Sci. Numer. Simul. 98, Article ID 105788, 9 p. (2021). MSC: 93D15 93C43 93C15 34H10 PDF BibTeX XML Cite \textit{Y.-G. Zheng} and \textit{Y.-Y. Zhang}, Commun. Nonlinear Sci. Numer. Simul. 98, Article ID 105788, 9 p. (2021; Zbl 1464.93061) Full Text: DOI OpenURL
Ray, Arnob; Pal, Arnab; Ghosh, Dibakar; Dana, Syamal K.; Hens, Chittaranjan Mitigating long transient time in deterministic systems by resetting. (English) Zbl 1466.37060 Chaos 31, No. 1, 011103, 7 p. (2021). MSC: 37M05 37M21 37H10 PDF BibTeX XML Cite \textit{A. Ray} et al., Chaos 31, No. 1, 011103, 7 p. (2021; Zbl 1466.37060) Full Text: DOI arXiv OpenURL
Bibik, Yu. V. Analytical investigation of the chaotic dynamics of a two-dimensional Lotka-Volterra system with a seasonality factor. (English. Russian original) Zbl 1465.37101 Comput. Math. Math. Phys. 61, No. 2, 226-241 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 2, 239-255 (2021). MSC: 37N25 70K30 70K55 92D25 PDF BibTeX XML Cite \textit{Yu. V. Bibik}, Comput. Math. Math. Phys. 61, No. 2, 226--241 (2021; Zbl 1465.37101); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 2, 239--255 (2021) Full Text: DOI OpenURL
Miino, Yuu; Ito, Daisuke; Ueta, Tetsushi; Kawakami, Hiroshi Locating and stabilizing unstable periodic orbits embedded in the horseshoe map. (English) Zbl 1464.37032 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 4, Article ID 2150110, 12 p. (2021). MSC: 37C25 37C27 37C75 37D45 PDF BibTeX XML Cite \textit{Y. Miino} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 4, Article ID 2150110, 12 p. (2021; Zbl 1464.37032) Full Text: DOI OpenURL
Zheng, Yuan-Guang; Zhang, Ying-Ying Stabilization of periodic oscillations with transient delayed feedback control. (English) Zbl 1458.93207 J. Franklin Inst. 358, No. 2, 1240-1251 (2021). MSC: 93D15 93C43 PDF BibTeX XML Cite \textit{Y.-G. Zheng} and \textit{Y.-Y. Zhang}, J. Franklin Inst. 358, No. 2, 1240--1251 (2021; Zbl 1458.93207) Full Text: DOI OpenURL
Anand, Pallov; Sharma, Bharat Bhushan Simplified synchronizability scheme for a class of nonlinear systems connected in chain configuration using contraction. (English) Zbl 1496.93058 Chaos Solitons Fractals 141, Article ID 110331, 17 p. (2020). MSC: 93C15 34D06 37B25 93D23 PDF BibTeX XML Cite \textit{P. Anand} and \textit{B. B. Sharma}, Chaos Solitons Fractals 141, Article ID 110331, 17 p. (2020; Zbl 1496.93058) Full Text: DOI OpenURL
Quade, Markus; Isele, Thomas; Abel, Markus Machine learning control – explainable and analyzable methods. (English) Zbl 1484.68196 Physica D 412, Article ID 132582, 11 p. (2020). MSC: 68T05 49K15 62J99 PDF BibTeX XML Cite \textit{M. Quade} et al., Physica D 412, Article ID 132582, 11 p. (2020; Zbl 1484.68196) Full Text: DOI OpenURL
Xu, Changjin; Aouiti, Chaouki; Liao, Maoxin; Li, Peiluan; Liu, Zixin Chaos control strategy for a fractional-order financial model. (English) Zbl 1486.34120 Adv. Difference Equ. 2020, Paper No. 573, 16 p. (2020). MSC: 34H05 34H10 34K20 91G80 PDF BibTeX XML Cite \textit{C. Xu} et al., Adv. Difference Equ. 2020, Paper No. 573, 16 p. (2020; Zbl 1486.34120) Full Text: DOI OpenURL
Mahmoud, Emad E.; AL-Harthi, Bushra H. A hyperchaotic detuned laser model with an infinite number of equilibria existing on a plane and its modified complex phase synchronization with time lag. (English) Zbl 1489.93046 Chaos Solitons Fractals 130, Article ID 109442, 15 p. (2020). MSC: 93C15 93C10 34D06 PDF BibTeX XML Cite \textit{E. E. Mahmoud} and \textit{B. H. AL-Harthi}, Chaos Solitons Fractals 130, Article ID 109442, 15 p. (2020; Zbl 1489.93046) Full Text: DOI OpenURL
Shabbir, Muhammad Sajjad; Din, Qamar; Ahmad, Khalil; Tassaddiq, Asifa; Soori, Atif Hassan; Khan, Muhammad Asif Stability, bifurcation, and chaos control of a novel discrete-time model involving Allee effect and cannibalism. (English) Zbl 1485.92100 Adv. Difference Equ. 2020, Paper No. 379, 28 p. (2020). MSC: 92D25 92D40 37N25 39A30 PDF BibTeX XML Cite \textit{M. S. Shabbir} et al., Adv. Difference Equ. 2020, Paper No. 379, 28 p. (2020; Zbl 1485.92100) Full Text: DOI OpenURL
Yang, Zhanying; Zhang, Jie Global stabilization of fractional-order bidirectional associative memory neural networks with mixed time delays via adaptive feedback control. (English) Zbl 1479.34122 Int. J. Comput. Math. 97, No. 10, 2074-2090 (2020). MSC: 34K20 34K37 93C15 93C40 PDF BibTeX XML Cite \textit{Z. Yang} and \textit{J. Zhang}, Int. J. Comput. Math. 97, No. 10, 2074--2090 (2020; Zbl 1479.34122) Full Text: DOI OpenURL
Hashemi, Somayeh; Pourmina, Mohammad Ali; Mobayen, Saleh; Alagheband, Mahdi R. Design of a secure communication system between base transmitter station and mobile equipment based on finite-time chaos synchronisation. (English) Zbl 1483.93058 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 51, No. 11, 1969-1986 (2020). MSC: 93B12 93D40 PDF BibTeX XML Cite \textit{S. Hashemi} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 51, No. 11, 1969--1986 (2020; Zbl 1483.93058) Full Text: DOI OpenURL
Lin, Funing; Xue, Guangming; Su, Guangwang; Qin, Bin A hybrid adaptive synchronization protocol for nondeterministic perturbed fractional-order chaotic nonlinear systems. (English) Zbl 1482.93313 Adv. Difference Equ. 2020, Paper No. 150, 19 p. (2020). MSC: 93C40 93C10 93C42 34A08 26A33 PDF BibTeX XML Cite \textit{F. Lin} et al., Adv. Difference Equ. 2020, Paper No. 150, 19 p. (2020; Zbl 1482.93313) Full Text: DOI OpenURL
Kangalgil, Figen; Işik, Seval Controlling chaos and Neimark-Sacker bifurcation in a discrete-time predator-prey system. (English) Zbl 1488.39055 Hacet. J. Math. Stat. 49, No. 5, 1761-1776 (2020). MSC: 39A60 39A30 39A28 39A33 92D25 PDF BibTeX XML Cite \textit{F. Kangalgil} and \textit{S. Işik}, Hacet. J. Math. Stat. 49, No. 5, 1761--1776 (2020; Zbl 1488.39055) Full Text: DOI OpenURL
Din, Qamar; Saleem, Nafeesa; Shabbir, Muhammad Sajjad A class of discrete predator-prey interaction with bifurcation analysis and chaos control. (English) Zbl 1470.37111 Math. Model. Nat. Phenom. 15, Paper No. 60, 27 p. (2020). MSC: 37N25 39A30 39A28 92D25 PDF BibTeX XML Cite \textit{Q. Din} et al., Math. Model. Nat. Phenom. 15, Paper No. 60, 27 p. (2020; Zbl 1470.37111) Full Text: DOI OpenURL
Li, Shuangbao; Ma, Xixi; Bian, Xiaoli; Lai, Siu-Kai; Zhang, Wei Suppressing homoclinic chaos for a weak periodically excited non-smooth oscillator. (English) Zbl 1459.34142 Nonlinear Dyn. 99, No. 2, 1621-1642 (2020). MSC: 34H10 34D10 37J40 34C37 PDF BibTeX XML Cite \textit{S. Li} et al., Nonlinear Dyn. 99, No. 2, 1621--1642 (2020; Zbl 1459.34142) Full Text: DOI OpenURL
Peitz, Sebastian; Otto, Samuel E.; Rowley, Clarence W. Data-driven model predictive control using interpolated Koopman generators. (English) Zbl 1461.49007 SIAM J. Appl. Dyn. Syst. 19, No. 3, 2162-2193 (2020). MSC: 49J20 65P99 47B33 49J45 37N35 93C30 PDF BibTeX XML Cite \textit{S. Peitz} et al., SIAM J. Appl. Dyn. Syst. 19, No. 3, 2162--2193 (2020; Zbl 1461.49007) Full Text: DOI arXiv OpenURL
Chang, Shun-Chang Stability analysis, routes to chaos, and quenching chaos in electromechanical valve actuators. (English) Zbl 07318092 Math. Comput. Simul. 177, 140-151 (2020). MSC: 34H10 37D45 PDF BibTeX XML Cite \textit{S.-C. Chang}, Math. Comput. Simul. 177, 140--151 (2020; Zbl 07318092) Full Text: DOI OpenURL
Eshaghi, Shiva; Khoshsiar Ghaziani, Reza; Ansari, Alireza Hopf bifurcation, chaos control and synchronization of a chaotic fractional-order system with chaos entanglement function. (English) Zbl 07318044 Math. Comput. Simul. 172, 321-340 (2020). MSC: 34D06 34A08 34H10 PDF BibTeX XML Cite \textit{S. Eshaghi} et al., Math. Comput. Simul. 172, 321--340 (2020; Zbl 07318044) Full Text: DOI OpenURL
Zhang, Li; Balasuriya, Sanjeeva Controlling trajectories globally via spatiotemporal finite-time optimal control. (English) Zbl 1458.49003 SIAM J. Appl. Dyn. Syst. 19, No. 3, 1609-1632 (2020). MSC: 49J15 34H10 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{S. Balasuriya}, SIAM J. Appl. Dyn. Syst. 19, No. 3, 1609--1632 (2020; Zbl 1458.49003) Full Text: DOI OpenURL
Abualnaja, Kholod M. An innovative way to generate Hamiltonian energy of a new hyperchaotic complex nonlinear model and its control. (English) Zbl 1454.37036 Complexity 2020, Article ID 6690955, 10 p. (2020). MSC: 37D45 PDF BibTeX XML Cite \textit{K. M. Abualnaja}, Complexity 2020, Article ID 6690955, 10 p. (2020; Zbl 1454.37036) Full Text: DOI OpenURL
Sawkmie, Ivan Skhem; Mahato, Mangal C. Effect of a constant bias on the nonlinear dynamics of a biharmonically driven sinusoidal potential system. (English) Zbl 1477.70042 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2030046, 15 p. (2020). MSC: 70K55 70K50 37D45 37M05 94C05 PDF BibTeX XML Cite \textit{I. S. Sawkmie} and \textit{M. C. Mahato}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2030046, 15 p. (2020; Zbl 1477.70042) Full Text: DOI OpenURL
Cang, Zixuan; Munch, Elizabeth; Wei, Guo-Wei Evolutionary homology on coupled dynamical systems with applications to protein flexibility analysis. (English) Zbl 1460.55007 J. Appl. Comput. Topol. 4, No. 4, 481-507 (2020). Reviewer: Jonathan Hodgson (Swarthmore) MSC: 55N31 62R40 37N25 92E10 PDF BibTeX XML Cite \textit{Z. Cang} et al., J. Appl. Comput. Topol. 4, No. 4, 481--507 (2020; Zbl 1460.55007) Full Text: DOI Link OpenURL
Kant, Nilay; Mukherjee, Ranjan Orbital stabilization of underactuated systems using virtual holonomic constraints and impulse controlled Poincaré maps. (English) Zbl 1454.93213 Syst. Control Lett. 146, Article ID 104813, 10 p. (2020). MSC: 93D05 93C27 93C85 PDF BibTeX XML Cite \textit{N. Kant} and \textit{R. Mukherjee}, Syst. Control Lett. 146, Article ID 104813, 10 p. (2020; Zbl 1454.93213) Full Text: DOI arXiv OpenURL
Chang, Shun-Chang Controlling chaos through period-doubling bifurcations in attitude dynamics for power systems. (English) Zbl 1459.34139 Math. Probl. Eng. 2020, Article ID 8853459, 10 p. (2020). MSC: 34H10 37D45 93B52 93C10 PDF BibTeX XML Cite \textit{S.-C. Chang}, Math. Probl. Eng. 2020, Article ID 8853459, 10 p. (2020; Zbl 1459.34139) Full Text: DOI OpenURL
Morena, Matthew A.; Short, Kevin M. Fundamental cupolets of chaotic systems. (English) Zbl 1451.34062 Chaos 30, No. 9, 093114, 17 p. (2020). MSC: 34C60 34C28 PDF BibTeX XML Cite \textit{M. A. Morena} and \textit{K. M. Short}, Chaos 30, No. 9, 093114, 17 p. (2020; Zbl 1451.34062) Full Text: DOI OpenURL
Arafa, Ayman A.; Xu, Yong; Mahmoud, Gamal M. Chaos suppression via integrative time delay control. (English) Zbl 1457.34112 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050208, 18 p. (2020). MSC: 34K35 34H10 34K20 34K18 34K23 34K13 PDF BibTeX XML Cite \textit{A. A. Arafa} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050208, 18 p. (2020; Zbl 1457.34112) Full Text: DOI OpenURL
Long, Jianjun; Huang, Hui A dynamic Stackelberg-Cournot duopoly model with heterogeneous strategies through one-way spillovers. (English) Zbl 1459.91081 Discrete Dyn. Nat. Soc. 2020, Article ID 3251609, 11 p. (2020). MSC: 91B54 91B55 91A15 PDF BibTeX XML Cite \textit{J. Long} and \textit{H. Huang}, Discrete Dyn. Nat. Soc. 2020, Article ID 3251609, 11 p. (2020; Zbl 1459.91081) Full Text: DOI OpenURL
Bella, Giovanni; Mattana, Paolo Chaos control in presence of financial bubbles. (English) Zbl 1451.91218 Econ. Lett. 193, Article ID 109314, 2 p. (2020). MSC: 91G45 PDF BibTeX XML Cite \textit{G. Bella} and \textit{P. Mattana}, Econ. Lett. 193, Article ID 109314, 2 p. (2020; Zbl 1451.91218) Full Text: DOI OpenURL
Mahmud, M. N.; Siri, Z.; Vélez, J. A.; Pérez, L. M.; Laroze, D. Chaotic convection in an Oldroyd viscoelastic fluid in saturated porous medium with feedback control. (English) Zbl 1445.76008 Chaos 30, No. 7, 073109, 12 p. (2020). MSC: 76A10 76S05 80A19 37N10 PDF BibTeX XML Cite \textit{M. N. Mahmud} et al., Chaos 30, No. 7, 073109, 12 p. (2020; Zbl 1445.76008) Full Text: DOI OpenURL
Ma, Xiaogang; Bao, Chunyu; Su, Lin Analysis of complex dynamics in different bargaining systems. (English) Zbl 1444.91137 Complexity 2020, Article ID 8406749, 16 p. (2020). MSC: 91B55 37N40 91B26 PDF BibTeX XML Cite \textit{X. Ma} et al., Complexity 2020, Article ID 8406749, 16 p. (2020; Zbl 1444.91137) Full Text: DOI OpenURL
Khennaoui, Amina-Aicha; Ouannas, Adel; Odibat, Zaid; Pham, Viet-Thanh; Grassi, Giuseppe On the three-dimensional fractional-order Hénon map with Lorenz-like attractors. (English) Zbl 1452.37043 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050217, 16 p. (2020). MSC: 37D45 37C70 39A12 26A33 39A70 PDF BibTeX XML Cite \textit{A.-A. Khennaoui} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050217, 16 p. (2020; Zbl 1452.37043) Full Text: DOI OpenURL
Ray, Arnob; Ghosh, Dibakar Another new chaotic system: bifurcation and chaos control. (English) Zbl 1452.37045 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050161, 11 p. (2020). MSC: 37D45 37G35 34H10 PDF BibTeX XML Cite \textit{A. Ray} and \textit{D. Ghosh}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050161, 11 p. (2020; Zbl 1452.37045) Full Text: DOI arXiv OpenURL
Din, Qamar; Haider, Kamran Discretization, bifurcation analysis and chaos control for Schnakenberg model. (English) Zbl 1447.39008 J. Math. Chem. 58, No. 8, 1615-1649 (2020). MSC: 39A60 39A28 92B05 92C50 PDF BibTeX XML Cite \textit{Q. Din} and \textit{K. Haider}, J. Math. Chem. 58, No. 8, 1615--1649 (2020; Zbl 1447.39008) Full Text: DOI OpenURL
Chen, Zhihua; Din, Qamar; Rafaqat, Muhammad; Saeed, Umer; Ajaz, Muhammad Bilal Discrete-time predator-prey interaction with selective harvesting and predator self-limitation. (English) Zbl 1489.92115 J. Math. 2020, Article ID 6737098, 13 p. (2020). MSC: 92D25 37G10 37N25 PDF BibTeX XML Cite \textit{Z. Chen} et al., J. Math. 2020, Article ID 6737098, 13 p. (2020; Zbl 1489.92115) Full Text: DOI OpenURL
Attili, Basem Investigation of the stability and the anti-synchronization of the Brusselator chemical reaction model. (English) Zbl 1446.35050 Nonlinear Funct. Anal. Appl. 25, No. 1, 189-197 (2020). MSC: 35K51 35K57 35B32 PDF BibTeX XML Cite \textit{B. Attili}, Nonlinear Funct. Anal. Appl. 25, No. 1, 189--197 (2020; Zbl 1446.35050) Full Text: Link OpenURL
Koshy-Chenthittayil, Sherli; Dimitrova, Elena From chaos to permanence using control theory (research). (English) Zbl 1440.92054 Acu, Bahar (ed.) et al., Advances in mathematical sciences. AWM research symposium, Houston, TX, USA, April 6–7, 2019. Cham: Springer. Assoc. Women Math. Ser. 21, 85-106 (2020). MSC: 92D25 92D40 37D45 37N25 34H05 34H10 PDF BibTeX XML Cite \textit{S. Koshy-Chenthittayil} and \textit{E. Dimitrova}, Assoc. Women Math. Ser. 21, 85--106 (2020; Zbl 1440.92054) Full Text: DOI OpenURL
Liu, Zhi; Guo, Rongwei; Qi, Yi; Jiang, Cuimei Simultaneity of synchronization and antisynchronization in a class of chaotic systems. (English) Zbl 1459.34143 Math. Probl. Eng. 2020, Article ID 3961287, 8 p. (2020). MSC: 34H10 34D06 37D45 PDF BibTeX XML Cite \textit{Z. Liu} et al., Math. Probl. Eng. 2020, Article ID 3961287, 8 p. (2020; Zbl 1459.34143) Full Text: DOI OpenURL
Liu, Zhi; Guo, Rongwei Stabilization of a class of complex chaotic systems by the dynamic feedback control. (English) Zbl 1435.93147 Complexity 2020, Article ID 4938149, 10 p. (2020). MSC: 93D15 93B52 34C28 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{R. Guo}, Complexity 2020, Article ID 4938149, 10 p. (2020; Zbl 1435.93147) Full Text: DOI OpenURL
Jiang, Zhichao; Zhang, Tongqian Feedback control of a chaotic finance system with two delays. (English) Zbl 1435.91201 Complexity 2020, Article ID 4937569, 17 p. (2020). MSC: 91G80 93B52 34K18 34K20 PDF BibTeX XML Cite \textit{Z. Jiang} and \textit{T. Zhang}, Complexity 2020, Article ID 4937569, 17 p. (2020; Zbl 1435.91201) Full Text: DOI OpenURL
Njah, A. N.; Ojo, K. S.; Abdurrazaq, A. Combination control of chaotic systems. (English) Zbl 1447.93142 Int. J. Appl. Comput. Math. 6, No. 2, Paper No. 48, 14 p. (2020). MSC: 93C15 34H10 34C28 PDF BibTeX XML Cite \textit{A. N. Njah} et al., Int. J. Appl. Comput. Math. 6, No. 2, Paper No. 48, 14 p. (2020; Zbl 1447.93142) Full Text: DOI OpenURL
Feng, Guo Chaotic dynamics and chaos control of Hassell-type recruitment population model. (English) Zbl 1459.92079 Discrete Dyn. Nat. Soc. 2020, Article ID 8148634, 9 p. (2020). MSC: 92D25 37D45 PDF BibTeX XML Cite \textit{G. Feng}, Discrete Dyn. Nat. Soc. 2020, Article ID 8148634, 9 p. (2020; Zbl 1459.92079) Full Text: DOI OpenURL
Lakshmi, Mayur V.; Fantuzzi, Giovanni; Fernández-Caballero, Jesús D.; Hwang, Yongyun; Chernyshenko, Sergei I. Finding extremal periodic orbits with polynomial optimization, with application to a nine-mode model of shear flow. (English) Zbl 1475.37094 SIAM J. Appl. Dyn. Syst. 19, No. 2, 763-787 (2020). Reviewer: Fernando Casas (Castellon) MSC: 37M21 37C27 76F20 PDF BibTeX XML Cite \textit{M. V. Lakshmi} et al., SIAM J. Appl. Dyn. Syst. 19, No. 2, 763--787 (2020; Zbl 1475.37094) Full Text: DOI arXiv OpenURL
Dmitrishin, D.; Hagelstein, P.; Khamitova, A.; Korenovskyi, A.; Stokolos, A. Fejér polynomials and control of nonlinear discrete systems. (English) Zbl 1436.93102 Constr. Approx. 51, No. 2, 383-412 (2020). MSC: 93D15 93C43 93C55 42A05 PDF BibTeX XML Cite \textit{D. Dmitrishin} et al., Constr. Approx. 51, No. 2, 383--412 (2020; Zbl 1436.93102) Full Text: DOI arXiv OpenURL
Sun, Yuanli; Ning, Lijuan Bifurcation analysis of a self-sustained birhythmic oscillator under two delays and colored noises. (English) Zbl 1436.34073 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 1, Article ID 2050013, 21 p. (2020). MSC: 34K50 34K18 34K13 PDF BibTeX XML Cite \textit{Y. Sun} and \textit{L. Ning}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 1, Article ID 2050013, 21 p. (2020; Zbl 1436.34073) Full Text: DOI OpenURL
Farazmand, Mohammad Mitigation of tipping point transitions by time-delay feedback control. (English) Zbl 1431.93057 Chaos 30, No. 1, 013149, 12 p. (2020). MSC: 93E03 93B52 PDF BibTeX XML Cite \textit{M. Farazmand}, Chaos 30, No. 1, 013149, 12 p. (2020; Zbl 1431.93057) Full Text: DOI arXiv OpenURL