Yaying, Taja Paranormed Riesz difference sequence spaces of fractional order. (English) Zbl 07595396 Kragujevac J. Math. 46, No. 2, 175-191 (2022). MSC: 46A45 46B45 PDF BibTeX XML Cite \textit{T. Yaying}, Kragujevac J. Math. 46, No. 2, 175--191 (2022; Zbl 07595396) Full Text: Link OpenURL
Raj, Kuldip; Esi, Ayhan; Sharma, Charu Matrix transformations and Toeplitz duals of generalized Orlicz Hilbert sequence spaces. (English) Zbl 1505.46011 Palest. J. Math. 11, No. 2, 55-68 (2022). MSC: 46A45 15B05 PDF BibTeX XML Cite \textit{K. Raj} et al., Palest. J. Math. 11, No. 2, 55--68 (2022; Zbl 1505.46011) Full Text: Link OpenURL
Paul, Avinoy On some new paranormed sequence spaces defined by the matrix \((\hat{D}) (\hat{r}, 0, 0, \hat{s})\). (English) Zbl 1492.46004 Proyecciones 40, No. 3, 779-796 (2021). MSC: 46A45 40A05 40A25 40C05 40H05 46A35 47A10 PDF BibTeX XML Cite \textit{A. Paul}, Proyecciones 40, No. 3, 779--796 (2021; Zbl 1492.46004) Full Text: DOI OpenURL
Yaying, Taja; Hazarika, Bipan; Et, Mikail Matrix mappings and Hausdorff measure of non-compactness on Riesz difference spaces of fractional order. (English) Zbl 1491.46008 J. Anal. 29, No. 4, 1443-1460 (2021). MSC: 46A45 47B39 PDF BibTeX XML Cite \textit{T. Yaying} et al., J. Anal. 29, No. 4, 1443--1460 (2021; Zbl 1491.46008) Full Text: DOI OpenURL
Yaying, Taja On the paranormed Nörlund difference sequence space of fractional order and geometric properties. (English) Zbl 1489.46009 Math. Slovaca 71, No. 1, 155-170 (2021). MSC: 46A45 46B45 46A80 46B20 PDF BibTeX XML Cite \textit{T. Yaying}, Math. Slovaca 71, No. 1, 155--170 (2021; Zbl 1489.46009) Full Text: DOI OpenURL
Yaying, Taja; Kara, Merve İlkhan On sequence spaces defined by the domain of tribonacci matrix in \(c_0\) and \(c\). (English) Zbl 1481.46005 Korean J. Math. 29, No. 1, 25-40 (2021). MSC: 46A45 46B45 47B37 47B07 40C05 PDF BibTeX XML Cite \textit{T. Yaying} and \textit{M. İ. Kara}, Korean J. Math. 29, No. 1, 25--40 (2021; Zbl 1481.46005) Full Text: DOI OpenURL
Yaying, Taja; Hazarika, Bipan; Mursaleen, M. On sequence space derived by the domain of \(q\)-Cesàro matrix in \(\ell_p\) space and the associated operator ideal. (English) Zbl 07265493 J. Math. Anal. Appl. 493, No. 1, Article ID 124453, 17 p. (2021). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{T. Yaying} et al., J. Math. Anal. Appl. 493, No. 1, Article ID 124453, 17 p. (2021; Zbl 07265493) Full Text: DOI OpenURL
Jalal, Tanweer Some ideal convergent multiplier sequence spaces using de la Vallee Poussin mean and Zweier operator. (English) Zbl 1468.46012 Proyecciones 39, No. 1, 91-105 (2020). MSC: 46A45 40A35 40C05 PDF BibTeX XML Cite \textit{T. Jalal}, Proyecciones 39, No. 1, 91--105 (2020; Zbl 1468.46012) Full Text: DOI OpenURL
Khan, Vakeel A.; Yasmeen; Fatima, Hira; Altaf, Henna A new type of paranorm intuitionistic fuzzy Zweier \(I\)-convergent double sequence spaces. (English) Zbl 1496.40014 Filomat 33, No. 5, 1279-1286 (2019). MSC: 40A35 40B05 46A45 26E50 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Filomat 33, No. 5, 1279--1286 (2019; Zbl 1496.40014) Full Text: DOI OpenURL
Basar, Feyzi; Yesilkayagil, Medine A survey for paranormed sequence spaces generated by infinite matrices. (English) Zbl 1436.46005 TWMS J. Pure Appl. Math. 10, No. 1, 3-38 (2019). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{F. Basar} and \textit{M. Yesilkayagil}, TWMS J. Pure Appl. Math. 10, No. 1, 3--38 (2019; Zbl 1436.46005) Full Text: Link OpenURL
Kirişci, Murat; Kadak, Uğur The method of almost convergence with operator of the form fractional order and applications. (English) Zbl 1412.47005 J. Nonlinear Sci. Appl. 10, No. 2, 828-842 (2017). MSC: 47A15 33B15 39A70 PDF BibTeX XML Cite \textit{M. Kirişci} and \textit{U. Kadak}, J. Nonlinear Sci. Appl. 10, No. 2, 828--842 (2017; Zbl 1412.47005) Full Text: DOI arXiv OpenURL
Raj, Kuldip; Jamwal, Seema On non-absolute type spaces and their Köthe-Toeplitz duals. (English) Zbl 1387.46011 Trans. A. Razmadze Math. Inst. 171, No. 2, 212-220 (2017). MSC: 46A45 46B45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. Jamwal}, Trans. A. Razmadze Math. Inst. 171, No. 2, 212--220 (2017; Zbl 1387.46011) Full Text: DOI OpenURL
Khan, Vakeel A.; Yasmeen; Fatima, Hira; Ahamd, Ayaz Intuitionistic fuzzy Zweier \(I\)-convergent double sequence spaces defined by modulus function. (English) Zbl 1438.46084 Cogent Math. 3, Article ID 1235320, 9 p. (2016). MSC: 46S40 46A45 40A35 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Cogent Math. 3, Article ID 1235320, 9 p. (2016; Zbl 1438.46084) Full Text: DOI OpenURL
Khan, Vakeel A.; Khan, Nazneen; Khan, Yasmeen On Zweier paranorm I-convergent double sequence spaces. (English) Zbl 1426.46002 Cogent Math. 3, Article ID 1122257, 9 p. (2016). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Cogent Math. 3, Article ID 1122257, 9 p. (2016; Zbl 1426.46002) Full Text: DOI OpenURL
Tamang, Karan; Hazarika, Bipan On some ideal convergent multiplier sequence spaces using de la Vallee Poussin mean and Zweier operator. (English) Zbl 1383.46008 Afr. Mat. 27, No. 3-4, 631-643 (2016). MSC: 46A45 40A05 40D25 40G15 PDF BibTeX XML Cite \textit{K. Tamang} and \textit{B. Hazarika}, Afr. Mat. 27, No. 3--4, 631--643 (2016; Zbl 1383.46008) Full Text: DOI OpenURL
Khan, Vakeel A.; Ebadullah, Khalid; Esi, Ayhan; Shafiq, Mohd On some Zweier \(I\)-convergent sequence spaces defined by a modulus function. (On some Zeweir \(I\)-convergent sequence spaces defined by a modulus function.) (English) Zbl 1328.46004 Afr. Mat. 26, No. 1-2, 115-125 (2015). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Afr. Mat. 26, No. 1--2, 115--125 (2015; Zbl 1328.46004) Full Text: DOI OpenURL
Candan, Murat Domain of the double sequential band matrix in the spaces of convergent and null sequences. (English) Zbl 1417.46003 Adv. Difference Equ. 2014, Paper No. 163, 18 p. (2014). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{M. Candan}, Adv. Difference Equ. 2014, Paper No. 163, 18 p. (2014; Zbl 1417.46003) Full Text: DOI OpenURL
Bişgin, Mustafa Cemil; Sönmez, Abdulcabbar Two new sequence spaces generated by the composition of \(m\)th order generalized difference matrix and lambda matrix. (English) Zbl 1375.46018 J. Inequal. Appl. 2014, Paper No. 274, 20 p. (2014). MSC: 46B45 40C05 40H05 PDF BibTeX XML Cite \textit{M. C. Bişgin} and \textit{A. Sönmez}, J. Inequal. Appl. 2014, Paper No. 274, 20 p. (2014; Zbl 1375.46018) Full Text: DOI OpenURL
Khan, Vakeel A.; Ebadullah, Khalid; Yasmeen On Zweier \(I\)-convergent sequence spaces. (English) Zbl 1316.46009 Proyecciones 33, No. 3, 259-276 (2014). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Proyecciones 33, No. 3, 259--276 (2014; Zbl 1316.46009) Full Text: DOI OpenURL
Hazarika, Bipan; Tamang, Karan; Singh, B. K. On paranormed Zweier ideal convergent sequence spaces defined by Orlicz function. (English) Zbl 1311.46003 J. Egypt. Math. Soc. 22, No. 3, 413-419 (2014). MSC: 46A45 40A05 40G15 PDF BibTeX XML Cite \textit{B. Hazarika} et al., J. Egypt. Math. Soc. 22, No. 3, 413--419 (2014; Zbl 1311.46003) Full Text: DOI OpenURL
Şengönül, Mehmet On the Zweier sequence spaces of fuzzy numbers. (English) Zbl 1314.46004 Int. J. Math. Math. Sci. 2014, Article ID 439169, 9 p. (2014). MSC: 46A45 26E50 40C05 PDF BibTeX XML Cite \textit{M. Şengönül}, Int. J. Math. Math. Sci. 2014, Article ID 439169, 9 p. (2014; Zbl 1314.46004) Full Text: DOI OpenURL
Sönmez, Abdulcabbar Almost convergence and triple band matrix. (English) Zbl 1286.40006 Math. Comput. Modelling 57, No. 9-10, 2393-2402 (2013). MSC: 40C05 46B45 PDF BibTeX XML Cite \textit{A. Sönmez}, Math. Comput. Modelling 57, No. 9--10, 2393--2402 (2013; Zbl 1286.40006) Full Text: DOI OpenURL
Ganie, Ab Hamid; Sheikh, Neyaz Ahmad On some new sequence spaces of non-absolute type and matrix transformations. (English) Zbl 1291.46003 J. Egypt. Math. Soc. 21, No. 2, 108-114 (2013). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{A. H. Ganie} and \textit{N. A. Sheikh}, J. Egypt. Math. Soc. 21, No. 2, 108--114 (2013; Zbl 1291.46003) Full Text: DOI OpenURL
Khan, Vakeel A.; Ebadullah, Khalid; Esi, Ayhan; Khan, Nazneen; Shafiq, Mohd On paranorm Zweier \(I\)-convergent sequence spaces. (English) Zbl 1285.46002 J. Math. 2013, Article ID 613501, 6 p. (2013). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{V. A. Khan} et al., J. Math. 2013, Article ID 613501, 6 p. (2013; Zbl 1285.46002) Full Text: DOI OpenURL
Sönmez, Abdulcabbar; Başar, Feyzi Generalized difference spaces of non-absolute type of convergent and null sequences. (English) Zbl 1267.46017 Abstr. Appl. Anal. 2012, Article ID 435076, 20 p. (2012). MSC: 46A45 46A35 PDF BibTeX XML Cite \textit{A. Sönmez} and \textit{F. Başar}, Abstr. Appl. Anal. 2012, Article ID 435076, 20 p. (2012; Zbl 1267.46017) Full Text: DOI OpenURL
Mursaleen, M.; Noman, A. K. On some imbedding relations between certain sequence spaces. (English. Russian original) Zbl 1251.46004 Ukr. Math. J. 63, No. 4, 564-579 (2011); translation from Ukr. Mat. Zh. 63, No. 4, 489-501 (2011). Reviewer: Hemen Dutta (Guwahati) MSC: 46A45 PDF BibTeX XML Cite \textit{M. Mursaleen} and \textit{A. K. Noman}, Ukr. Math. J. 63, No. 4, 564--579 (2011; Zbl 1251.46004); translation from Ukr. Mat. Zh. 63, No. 4, 489--501 (2011) Full Text: DOI Link OpenURL
Sönmez, Abdulcabbar Some new sequence spaces derived by the domain of the triple band matrix. (English) Zbl 1228.40006 Comput. Math. Appl. 62, No. 2, 641-650 (2011). MSC: 40C05 40H05 46B45 PDF BibTeX XML Cite \textit{A. Sönmez}, Comput. Math. Appl. 62, No. 2, 641--650 (2011; Zbl 1228.40006) Full Text: DOI OpenURL
Karakaya, Vatan; Noman, Abdullah K.; Polat, Harun On paranormed \(\lambda \)-sequence spaces of non-absolute type. (English) Zbl 1228.40004 Math. Comput. Modelling 54, No. 5-6, 1473-1480 (2011). MSC: 40C05 40H05 PDF BibTeX XML Cite \textit{V. Karakaya} et al., Math. Comput. Modelling 54, No. 5--6, 1473--1480 (2011; Zbl 1228.40004) Full Text: DOI OpenURL
Başar, Feyzi; Kirişçi, Murat Almost convergence and generalized difference matrix. (English) Zbl 1217.40001 Comput. Math. Appl. 61, No. 3, 602-611 (2011). MSC: 40A05 40C05 PDF BibTeX XML Cite \textit{F. Başar} and \textit{M. Kirişçi}, Comput. Math. Appl. 61, No. 3, 602--611 (2011; Zbl 1217.40001) Full Text: DOI OpenURL
Demiriz, Serkan; Çakan, Celal Some topological and geometrical properties of a new difference sequence space. (English) Zbl 1228.46005 Abstr. Appl. Anal. 2011, Article ID 213878, 14 p. (2011). MSC: 46A45 46B45 PDF BibTeX XML Cite \textit{S. Demiriz} and \textit{C. Çakan}, Abstr. Appl. Anal. 2011, Article ID 213878, 14 p. (2011; Zbl 1228.46005) Full Text: DOI EuDML OpenURL
Mursaleen, M.; Noman, Abdullah K. On some new difference sequence spaces of non-absolute type. (English) Zbl 1201.40003 Math. Comput. Modelling 52, No. 3-4, 603-617 (2010). MSC: 40C05 PDF BibTeX XML Cite \textit{M. Mursaleen} and \textit{A. K. Noman}, Math. Comput. Modelling 52, No. 3--4, 603--617 (2010; Zbl 1201.40003) Full Text: DOI OpenURL
Kirişçi, Murat; Başar, Feyzi Some new sequence spaces derived by the domain of generalized difference matrix. (English) Zbl 1201.40001 Comput. Math. Appl. 60, No. 5, 1299-1309 (2010). MSC: 40C05 46A45 PDF BibTeX XML Cite \textit{M. Kirişçi} and \textit{F. Başar}, Comput. Math. Appl. 60, No. 5, 1299--1309 (2010; Zbl 1201.40001) Full Text: DOI OpenURL
Yan, Ya Qiang Characterization of matrix operators on Orlicz spaces. (English) Zbl 1303.46023 Collect. Math. 60, No. 1, 115-122 (2009). MSC: 46E30 47B37 47B38 PDF BibTeX XML Cite \textit{Y. Q. Yan}, Collect. Math. 60, No. 1, 115--122 (2009; Zbl 1303.46023) Full Text: DOI EuDML OpenURL
Altay, Bilâl; Sar, Feyzi Başar Certain topological properties and duals of the domain of a triangle matrix in a sequence space. (English) Zbl 1152.46003 J. Math. Anal. Appl. 336, No. 1, 632-645 (2007). MSC: 46A35 46A45 40G05 40H05 PDF BibTeX XML Cite \textit{B. Altay} and \textit{F. B. Sar}, J. Math. Anal. Appl. 336, No. 1, 632--645 (2007; Zbl 1152.46003) Full Text: DOI OpenURL
Altay, Bilâl; Başar, Feyzi Generalization of the sequence space \(\ell (p)\) derived by weighted mean. (English) Zbl 1116.46003 J. Math. Anal. Appl. 330, No. 1, 174-185 (2007). MSC: 46A45 PDF BibTeX XML Cite \textit{B. Altay} and \textit{F. Başar}, J. Math. Anal. Appl. 330, No. 1, 174--185 (2007; Zbl 1116.46003) Full Text: DOI OpenURL
Altay, Bilâl; Başar, Feyzi Some paranormed sequence spaces of non-absolute type derived by weighted mean. (English) Zbl 1105.46005 J. Math. Anal. Appl. 319, No. 2, 494-508 (2006). MSC: 46A45 PDF BibTeX XML Cite \textit{B. Altay} and \textit{F. Başar}, J. Math. Anal. Appl. 319, No. 2, 494--508 (2006; Zbl 1105.46005) Full Text: DOI OpenURL
Altay, B.; Başar, F.; Mursaleen, M. On the Euler sequence spaces which include the spaces \(\ell_{p}\) and \(\ell_{\infty}\). I. (English) Zbl 1101.46015 Inf. Sci. 176, No. 10, 1450-1462 (2006). MSC: 46B45 PDF BibTeX XML Cite \textit{B. Altay} et al., Inf. Sci. 176, No. 10, 1450--1462 (2006; Zbl 1101.46015) Full Text: DOI OpenURL
Aydın, Cafer; Başar, Feyzı Some new difference sequence spaces. (English) Zbl 1072.46007 Appl. Math. Comput. 157, No. 3, 677-693 (2004). MSC: 46A45 PDF BibTeX XML Cite \textit{C. Aydın} and \textit{F. Başar}, Appl. Math. Comput. 157, No. 3, 677--693 (2004; Zbl 1072.46007) Full Text: DOI OpenURL