×

Pricing options under stochastic volatility: a power series approach. (English) Zbl 1199.91200

The authors present a new approach for solving the pricing equations (partial differential equations, PDEs) of European call options for very general stochastic models, including the Stein and Stein, the Hull and White, and the Heston models. The backward Kolmogorov PDEs, satisfied by the price function, are solved by a series expansion around zero in powers of the correlation coefficient. It turns out that direct processing of PDE permits to generate a whole family of PDEs with appropriate terminal conditions, whose solutions identify the coefficients of the series. Employing Duhamel’s principle, the solutions are created recursively, and their probabilistic representation is given exploiting the Feynman-Kac formula. Under some regularity conditions, the convergence of the series with positive radius is proved. The estimation of error is also presented, if one replaces the series by a finite sum.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alós, E.: A generalization of the Hull and White formula with applications to option pricing approximation. Finance Stoch. 10, 353–365 (2006) · Zbl 1101.60044 · doi:10.1007/s00780-006-0013-5
[2] Alós, E., Leon, J.A., Vives, J.: On the short time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11, 571–589 (2007) · Zbl 1145.91020 · doi:10.1007/s00780-007-0049-1
[3] Ball, C.A., Roma, A.: Stochastic volatility option pricing. J. Financ. Quant. Anal. 29, 581–607 (1994)
[4] Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Pol. Econ. 81, 637–654 (1973) · Zbl 1092.91524 · doi:10.1086/260062
[5] Bakshi, G.S., Cao, C., Chen, Z.: Empirical performance of alternative option pricing models. J. Finance 52, 2003–2049 (1997) · doi:10.1111/j.1540-6261.1997.tb02749.x
[6] Bates, D.S.: Jumps and stochastic volatility: exchange rate processes implicit in the Deutsche Mark options. Rev. Financ. Stud. 9, 69–107 (1996) · doi:10.1093/rfs/9.1.69
[7] Carr, P., Geman, H., Madan, D., Yor, M.: Stochastic volatility for Lévy processes. Math. Finance 13, 345–382 (2003) · Zbl 1092.91022 · doi:10.1111/1467-9965.00020
[8] Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finance 3, 463–520 (1999)
[9] Duffie, D., Filipović, D., Schachermayer, W.: Affine processes and applications in finance. Ann. Appl. Probab. 13, 984–1053 (2003) · Zbl 1048.60059 · doi:10.1214/aoap/1060202833
[10] Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. AMS, Providence (1998) · Zbl 0902.35002
[11] Fouque, J.P., Papanicolaou, G., Sircar, R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, Cambridge (2000) · Zbl 0954.91025
[12] Fouque, J.P., Papanicolaou, G., Sircar, R., Solna, K.: Singular perturbations in option pricing. SIAM J. Appl. Math. 63, 1648–1665 (2003) · Zbl 1039.91024 · doi:10.1137/S0036139902401550
[13] Frey, R.: Derivative asset analysis in models with level-dependent and stochastic volatility. CWI Q. 10, 1–34 (1996)
[14] Ghysels, E., Harvey, A.C., Renault, E.: Stochastic volatility. In: Maddala, G.S., Rao, C.R. (eds.) Handbook of Statistics, vol. 14, pp. 119–191. Elsevier, Amsterdam (1996)
[15] Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, Berlin (2004) · Zbl 1038.91045
[16] Hagan, P.S., Kumar, D., Lesniewski, A.S., Woodward, D.E.: Managing smile risk. WILMOTT Mag. September, 84–108 (2002)
[17] Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. 2, 75–115 (1918) · JFM 46.0198.02 · doi:10.1112/plms/s2-17.1.75
[18] Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993) · Zbl 1384.35131 · doi:10.1093/rfs/6.2.327
[19] Heyde, C.C., Wong, B.: On the martingale property of stochastic exponentials. J. Appl. Probab. 41, 654–664 (2004) · Zbl 1066.60064 · doi:10.1239/jap/1091543416
[20] Hull, J.C., White, A.: The pricing of options on assets with stochastic volatilities. J. Finance 2, 281–300 (1987) · Zbl 1126.91369 · doi:10.1111/j.1540-6261.1987.tb02568.x
[21] Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (2005) · Zbl 0734.60060
[22] Lewis, A.: Option Valuation under Stochastic Volatility. Finance Press (2000) · Zbl 0937.91060
[23] Maghsoodi, Y.: Exact solutions of a martingale stochastic volatility option problem and its empirical evaluation. Math. Finance 17, 249–265 (2007) · Zbl 1186.91218 · doi:10.1111/j.1467-9965.2006.00302.x
[24] Melino, A., Turnbull, M.: Pricing foreign currency options with stochastic volatility. J. Econom. 45, 239–265 (1990) · Zbl 1126.91374 · doi:10.1016/0304-4076(90)90100-8
[25] Nualart, D.: The Malliavin Calculus and Related Topics. Probability and its Applications. Springer, Berlin (1996)
[26] Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2005)
[27] Renault, E., Touzi, N.: Option hedging and implied volatilities in a stochastic volatility model. Math. Finance 6, 279–302 (1996) · Zbl 0915.90028 · doi:10.1111/j.1467-9965.1996.tb00117.x
[28] Scott, L.O.: Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: applications of the Fourier inversion methods. Math. Finance 7, 413–426 (1997) · Zbl 1020.91030 · doi:10.1111/1467-9965.00039
[29] Stein, E., Stein, J.: Stock price distributions with stochastic volatility: an analytic approach. Rev. Financ. Stud. 4, 727–752 (1991) · Zbl 1458.62253 · doi:10.1093/rfs/4.4.727
[30] Schöbel, E., Zhu, J.: Stochastic volatility with an Ornstein–Uhlenbeck process: an extension. Eur. Finance Rev. 3, 23–46 (1999) · Zbl 1028.91026 · doi:10.1023/A:1009803506170
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.