Mihaly, Vlad; Şuşcă, Mircea; Dobra, Petru Robust numeric implementation of the fractional-order element. (English) Zbl 07909871 J. Franklin Inst. 361, No. 14, Article ID 107087, 20 p. (2024). MSC: 93B11 26A33 PDFBibTeX XMLCite \textit{V. Mihaly} et al., J. Franklin Inst. 361, No. 14, Article ID 107087, 20 p. (2024; Zbl 07909871) Full Text: DOI
Wang, Lei; Liu, Da-Yan; Huang, Liang; Gibaru, Olivier A novel modulating functions-based non-asymptotic fractional order state differentiator for DC motor systems. (English) Zbl 07899891 Commun. Nonlinear Sci. Numer. Simul. 138, Article ID 108160, 13 p. (2024). MSC: 93Cxx 93Bxx 34Axx PDFBibTeX XMLCite \textit{L. Wang} et al., Commun. Nonlinear Sci. Numer. Simul. 138, Article ID 108160, 13 p. (2024; Zbl 07899891) Full Text: DOI
Zhang, Xuefeng; Lv, Yuanda; Zhang, Jin-Xi \(H_\infty\) observer-based controller synthesis for fractional order systems over finite frequency range. (English) Zbl 07894923 Appl. Math. Comput. 474, Article ID 128696, 14 p. (2024). MSC: 93Cxx 93Bxx 93Dxx PDFBibTeX XMLCite \textit{X. Zhang} et al., Appl. Math. Comput. 474, Article ID 128696, 14 p. (2024; Zbl 07894923) Full Text: DOI
Zhang, Jia-Rui; Lu, Jun-Guo; Zhang, Qing-Hao Robust asymptotic stability analysis for fractional-order systems with commensurate time delays: the \(1<\beta \leq 2\) case. (English) Zbl 07879853 Appl. Math. Comput. 475, Article ID 128759, 15 p. (2024). MSC: 93Cxx 34Axx 93Dxx PDFBibTeX XMLCite \textit{J.-R. Zhang} et al., Appl. Math. Comput. 475, Article ID 128759, 15 p. (2024; Zbl 07879853) Full Text: DOI
Zhu, Long-Jun; Lu, Jun-Guo; Zhu, Zhen Robust stability and stabilization of uncertain fractional-order singularly perturbed systems. (English) Zbl 07830981 Comput. Appl. Math. 43, No. 1, Paper No. 58, 13 p. (2024). MSC: 93D09 93D21 93D15 93C70 26A33 PDFBibTeX XMLCite \textit{L.-J. Zhu} et al., Comput. Appl. Math. 43, No. 1, Paper No. 58, 13 p. (2024; Zbl 07830981) Full Text: DOI
Shojaei, Khoshnam A novel saturated PID-type observer-based controller for wheeled mobile robots with a guaranteed performance considering path curvature. (English) Zbl 1533.93217 Int. J. Robust Nonlinear Control 34, No. 6, 3697-3725 (2024). MSC: 93B52 93C85 PDFBibTeX XMLCite \textit{K. Shojaei}, Int. J. Robust Nonlinear Control 34, No. 6, 3697--3725 (2024; Zbl 1533.93217) Full Text: DOI
Lenka, Bichitra Kumar; Upadhyay, Ranjit Kumar New results on dynamic output state feedback stabilization of some class of time-varying nonlinear Caputo derivative systems. (English) Zbl 1533.93599 Commun. Nonlinear Sci. Numer. Simul. 131, Article ID 107805, 20 p. (2024). MSC: 93D15 93D20 93C15 34A08 PDFBibTeX XMLCite \textit{B. K. Lenka} and \textit{R. K. Upadhyay}, Commun. Nonlinear Sci. Numer. Simul. 131, Article ID 107805, 20 p. (2024; Zbl 1533.93599) Full Text: DOI
Kurucu, Mert Can; Yumuk, Erhan; Güzelkaya, Müjde; Eksin, Ibrahim Online tuning of derivative order term of variable-order fractional proportional-integral-derivative controllers for the first-order time delay systems. (English) Zbl 07889180 Asian J. Control 25, No. 4, 2628-2640 (2023). MSC: 93-XX PDFBibTeX XMLCite \textit{M. C. Kurucu} et al., Asian J. Control 25, No. 4, 2628--2640 (2023; Zbl 07889180) Full Text: DOI
Veerendar, Tejavath; Kumar, Deepak; Sreeram, Victor Fractional-order PID and internal model control-based dual-loop load frequency control using teaching-learning optimization. (English) Zbl 07889170 Asian J. Control 25, No. 4, 2482-2497 (2023). MSC: 93-XX PDFBibTeX XMLCite \textit{T. Veerendar} et al., Asian J. Control 25, No. 4, 2482--2497 (2023; Zbl 07889170) Full Text: DOI
Ghorbani, Majid; Tepljakov, Aleksei; Petlenkov, Eduard Stabilizing region of fractional-order proportional integral derivative controllers for interval delayed fractional-order plants. (English) Zbl 07889063 Asian J. Control 25, No. 2, 1145-1155 (2023). MSC: 93-XX PDFBibTeX XMLCite \textit{M. Ghorbani} et al., Asian J. Control 25, No. 2, 1145--1155 (2023; Zbl 07889063) Full Text: DOI
Soukkou, Ammar; Soukkou, Yassine; Haddad, Sofiane; Benghanem, Mohamed; Rabhi, Abdelhamid Review, design, stabilization and synchronization of fractional-order energy resources demand-supply hyperchaotic systems using fractional-order PD-based feedback control scheme. (English) Zbl 1533.93572 Arch. Control Sci. 33, No. 3, 539-563 (2023). MSC: 93D05 93B52 26A33 34H10 90C59 PDFBibTeX XMLCite \textit{A. Soukkou} et al., Arch. Control Sci. 33, No. 3, 539--563 (2023; Zbl 1533.93572) Full Text: DOI OA License
Shekhar, Snehanshu; Kumar, Anupam Fractional order interval type-2 fuzzy logic controller. (English) Zbl 1534.93279 Castillo, Oscar (ed.) et al., Recent trends on type-2 fuzzy logic systems: theory, methodology and applications. Cham: Springer. Stud. Fuzziness Soft Comput. 425, 29-42 (2023). MSC: 93C42 93B52 26A33 PDFBibTeX XMLCite \textit{S. Shekhar} and \textit{A. Kumar}, Stud. Fuzziness Soft Comput. 425, 29--42 (2023; Zbl 1534.93279) Full Text: DOI
Shatov, D. V. Synthesis of parameters of proportionally-integral and proportionally-integral-differential controllers for stationary linear objects with nonzero initial conditions. (English. Russian original) Zbl 1528.93053 J. Comput. Syst. Sci. Int. 62, No. 1, 17-26 (2023); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upr. 2023, No. 1, 18-27 (2023). MSC: 93B50 93B52 PDFBibTeX XMLCite \textit{D. V. Shatov}, J. Comput. Syst. Sci. Int. 62, No. 1, 17--26 (2023; Zbl 1528.93053); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upr. 2023, No. 1, 18--27 (2023) Full Text: DOI
He, Shaobo; Vignesh, D.; Rondoni, Lamberto; Banerjee, Santo Chaos and multi-layer attractors in asymmetric neural networks coupled with discrete fractional memristor. (English) Zbl 1530.92010 Neural Netw. 167, 572-587 (2023). MSC: 92B20 26A33 37D45 PDFBibTeX XMLCite \textit{S. He} et al., Neural Netw. 167, 572--587 (2023; Zbl 1530.92010) Full Text: DOI
Kumar, Lalitesh; Singh Dhillon, Sukhwinder; Kumar, Prawendra Fractional-order filter-based enhanced full state feedback control design with multi-objective formulation using grey wolf optimization algorithm. (English) Zbl 1531.93126 Optim. Control Appl. Methods 44, No. 4, 1854-1872 (2023). MSC: 93B52 93E11 26A33 90C59 PDFBibTeX XMLCite \textit{L. Kumar} et al., Optim. Control Appl. Methods 44, No. 4, 1854--1872 (2023; Zbl 1531.93126) Full Text: DOI
Wang, Lu; Liang, Hui Superconvergence and postprocessing of collocation methods for fractional differential equations. (English) Zbl 1530.65187 J. Sci. Comput. 97, No. 2, Paper No. 29, 29 p. (2023). MSC: 65R20 34A08 45D05 PDFBibTeX XMLCite \textit{L. Wang} and \textit{H. Liang}, J. Sci. Comput. 97, No. 2, Paper No. 29, 29 p. (2023; Zbl 1530.65187) Full Text: DOI
Mahata, Shibendu; Herencsar, Norbert; Maione, Guido Optimal approximation of analog PID controllers of complex fractional-order. (English) Zbl 1522.93070 Fract. Calc. Appl. Anal. 26, No. 4, 1566-1593 (2023). MSC: 93B51 93C15 93B50 34A08 34K37 PDFBibTeX XMLCite \textit{S. Mahata} et al., Fract. Calc. Appl. Anal. 26, No. 4, 1566--1593 (2023; Zbl 1522.93070) Full Text: DOI OA License
Bettou, Khalfa; Charef, Abdelfatah Fractional order \(\mathrm{PI}^\lambda\mathrm{D}^\mu\) A controller design based on Bode’s ideal function. (English) Zbl 1521.93057 Arch. Control Sci. 33, No. 2, 425-458 (2023). MSC: 93B52 93C15 34A08 PDFBibTeX XMLCite \textit{K. Bettou} and \textit{A. Charef}, Arch. Control Sci. 33, No. 2, 425--458 (2023; Zbl 1521.93057) Full Text: DOI OA License
Etedali, Sadegh; Zamani, Abbas-Ali; Akbari, Morteza; Seifi, Mohammad A new seismic control framework of optimal \(\mathrm{PI}^\lambda\mathrm{D}^\mu\) controller series with fuzzy PD controller including soil-structure interaction. (English) Zbl 1521.93059 J. Franklin Inst. 360, No. 14, 10536-10563 (2023). MSC: 93B52 93C95 26A33 PDFBibTeX XMLCite \textit{S. Etedali} et al., J. Franklin Inst. 360, No. 14, 10536--10563 (2023; Zbl 1521.93059) Full Text: DOI
Han, Yuxin; Huang, Xin; Gu, Wei; Zheng, Bolong Linearized transformed \(L1\) Finite element methods for semi-linear time-fractional parabolic problems. (English) Zbl 07736285 Appl. Math. Comput. 458, Article ID 128242, 14 p. (2023). MSC: 65Mxx 35Rxx 35Kxx PDFBibTeX XMLCite \textit{Y. Han} et al., Appl. Math. Comput. 458, Article ID 128242, 14 p. (2023; Zbl 07736285) Full Text: DOI
Lv, Chunwan; Wu, Chufen; Wu, Ze-Hao; Liu, Da-Yan Boundary state and output feedback stabilisation of a coupled time fractional hyperbolic equation. (English) Zbl 1520.93405 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 54, No. 11, 2366-2381 (2023). MSC: 93D15 93C20 35R11 PDFBibTeX XMLCite \textit{C. Lv} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 54, No. 11, 2366--2381 (2023; Zbl 1520.93405) Full Text: DOI
Zhang, Xuefeng; Zhang, Jin-Xi; Huang, Wenkai; Shi, Peng Non-fragile sliding mode observer based fault estimation for interval type-2 fuzzy singular fractional order systems. (English) Zbl 1520.93083 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 54, No. 7, 1451-1470 (2023). MSC: 93B12 93B53 93C42 93C40 26A33 PDFBibTeX XMLCite \textit{X. Zhang} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 54, No. 7, 1451--1470 (2023; Zbl 1520.93083) Full Text: DOI
Vignesh, D.; He, Shaobo; Banerjee, Santo Modelling discrete time fractional Rucklidge system with complex state variables and its synchronization. (English) Zbl 07704196 Appl. Math. Comput. 455, Article ID 128111, 19 p. (2023). MSC: 26A33 39A28 39A30 PDFBibTeX XMLCite \textit{D. Vignesh} et al., Appl. Math. Comput. 455, Article ID 128111, 19 p. (2023; Zbl 07704196) Full Text: DOI
Arora, Sugandha; Mathur, Trilok; Tiwari, Kamlesh A fractional-order model to study the dynamics of the spread of crime. (English) Zbl 1519.34045 J. Comput. Appl. Math. 426, Article ID 115102, 23 p. (2023). MSC: 34C60 91D10 34C05 34D20 34D23 34D05 34A08 PDFBibTeX XMLCite \textit{S. Arora} et al., J. Comput. Appl. Math. 426, Article ID 115102, 23 p. (2023; Zbl 1519.34045) Full Text: DOI
Zhou, Yong; He, Jia Wei Cauchy problems of nonlinear nonautonomous fractional evolution equations. (English) Zbl 1516.35482 Rocky Mt. J. Math. 53, No. 1, 309-324 (2023). MSC: 35R11 35K90 37B55 47D06 PDFBibTeX XMLCite \textit{Y. Zhou} and \textit{J. W. He}, Rocky Mt. J. Math. 53, No. 1, 309--324 (2023; Zbl 1516.35482) Full Text: DOI Link
Navish, A. A.; Priya, M.; Uthayakumar, R. The relationship between the order of \((k, s)\)-Riemann-Liouville fractional integral and the fractal dimensions of a fractal function. (English) Zbl 1512.26005 J. Anal. 31, No. 1, 261-277 (2023). Reviewer: Ismail Huseynov (Mersin) MSC: 26A33 26B30 28A78 28A80 PDFBibTeX XMLCite \textit{A. A. Navish} et al., J. Anal. 31, No. 1, 261--277 (2023; Zbl 1512.26005) Full Text: DOI
Tarate, Shivaji Ashok; Bhadane, Ashok P.; Gaikwad, Shrikisan B.; Kshirsagar, Kishor Ashok Solution of time-fractional equations via Sumudu-Adomian decomposition method. (English) Zbl 1538.35450 Comput. Methods Differ. Equ. 11, No. 2, 345-356 (2023). MSC: 35R11 26A33 33E12 35A22 PDFBibTeX XMLCite \textit{S. A. Tarate} et al., Comput. Methods Differ. Equ. 11, No. 2, 345--356 (2023; Zbl 1538.35450) Full Text: DOI
Chen, Song; Chen, Tehuan; Chu, Jian; Xu, Chao Global stabilization of uncertain nonlinear systems via fractional-order PID. (English) Zbl 1499.93063 Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106838, 16 p. (2023). MSC: 93D15 93C41 93C10 26A33 PDFBibTeX XMLCite \textit{S. Chen} et al., Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106838, 16 p. (2023; Zbl 1499.93063) Full Text: DOI
Chen, Pengchong; Zheng, Weijia; Luo, Ying; Peng, Yibing; Chen, Yangquan Robust three-parameter fractional-order proportional integral derivative controller synthesis for permanent magnet synchronous motor speed servo system. (English) Zbl 07887224 Asian J. Control 24, No. 6, 3418-3433 (2022). MSC: 93-XX PDFBibTeX XMLCite \textit{P. Chen} et al., Asian J. Control 24, No. 6, 3418--3433 (2022; Zbl 07887224) Full Text: DOI
Hongu, Junichi; Iba, Daisuke Relation of nonlinear oscillator design based on phase reduction method and fractional derivative. (English) Zbl 07842374 Int. J. Adapt. Control Signal Process. 36, No. 11, 2854-2879 (2022). MSC: 93-XX PDFBibTeX XMLCite \textit{J. Hongu} and \textit{D. Iba}, Int. J. Adapt. Control Signal Process. 36, No. 11, 2854--2879 (2022; Zbl 07842374) Full Text: DOI OA License
Muñoz-Vázquez, Aldo Jonathan; Fernández-Anaya, Guillermo; Sánchez-Torres, Juan Diego; Boulaaras, Salah Robust stabilisation of distributed-order systems. (English) Zbl 1534.93352 Math. Methods Appl. Sci. 45, No. 17, 11390-11402 (2022). MSC: 93D05 93D15 PDFBibTeX XMLCite \textit{A. J. Muñoz-Vázquez} et al., Math. Methods Appl. Sci. 45, No. 17, 11390--11402 (2022; Zbl 1534.93352) Full Text: DOI
Shao, Shuyi; Chen, Mou Robust discrete-time fractional-order control for an unmanned aerial vehicle based on disturbance observer. (English) Zbl 1528.93042 Int. J. Robust Nonlinear Control 32, No. 8, 4665-4682 (2022). MSC: 93B35 93C55 93C85 26A33 93B53 PDFBibTeX XMLCite \textit{S. Shao} and \textit{M. Chen}, Int. J. Robust Nonlinear Control 32, No. 8, 4665--4682 (2022; Zbl 1528.93042) Full Text: DOI
Swethamarai, P.; Lakshmi, P.; Gokul Prassad, S. Whale-optimized fuzzy-fractional order controller-based automobile suspension model. (English) Zbl 1523.93011 Eng. Optim. 54, No. 7, 1110-1130 (2022). MSC: 93C95 93C42 PDFBibTeX XMLCite \textit{P. Swethamarai} et al., Eng. Optim. 54, No. 7, 1110--1130 (2022; Zbl 1523.93011) Full Text: DOI
Zhou, Yong; He, Jia Wei; Alsaedi, Ahmed; Ahmad, Bashir The well-posedness for semilinear time fractional wave equations on \(\mathbb{R}^N\). (English) Zbl 1512.35647 Electron. Res. Arch. 30, No. 8, 2981-3003 (2022). MSC: 35R11 35L15 35L71 PDFBibTeX XMLCite \textit{Y. Zhou} et al., Electron. Res. Arch. 30, No. 8, 2981--3003 (2022; Zbl 1512.35647) Full Text: DOI OA License
Tabatabaei-Nejhad, Seyede Zahra; Eghtesad, Mohammad; Farid, Mehrdad; Bazargan-Lari, Yousef Combination of fractional-order, adaptive second order and non-singular terminal sliding mode controls for dynamical systems with uncertainty and under-actuation property. (English) Zbl 1507.34070 Chaos Solitons Fractals 165, Part 1, Article ID 112752, 9 p. (2022). MSC: 34H05 34A08 26A33 PDFBibTeX XMLCite \textit{S. Z. Tabatabaei-Nejhad} et al., Chaos Solitons Fractals 165, Part 1, Article ID 112752, 9 p. (2022; Zbl 1507.34070) Full Text: DOI
He, Jia Wei; Zhou, Yong Cauchy problem for non-autonomous fractional evolution equations. (English) Zbl 1509.47065 Fract. Calc. Appl. Anal. 25, No. 6, 2241-2274 (2022). MSC: 47D06 34G20 26A33 33E12 PDFBibTeX XMLCite \textit{J. W. He} and \textit{Y. Zhou}, Fract. Calc. Appl. Anal. 25, No. 6, 2241--2274 (2022; Zbl 1509.47065) Full Text: DOI
Das, Anupam; Hazarika, Bipan; Deuri, Bhuban Chandra Existence of an infinite system of fractional hybrid differential equations in a tempered sequence space. (English) Zbl 1509.47110 Fract. Calc. Appl. Anal. 25, No. 5, 2113-2125 (2022). MSC: 47N20 26A33 45J05 34A08 PDFBibTeX XMLCite \textit{A. Das} et al., Fract. Calc. Appl. Anal. 25, No. 5, 2113--2125 (2022; Zbl 1509.47110) Full Text: DOI
Singh, Abhaya Pal; Yerra, Srikanth; Faudzi, Ahmad Athif Mohd Design of robust model predictive controller for DC motor using fractional calculus. (English) Zbl 1504.93098 Mehta, Utkal (ed.) et al., Applied fractional calculus in identification and control. Cham: Springer. Stud. Infrastruct. Control, 135-147 (2022). MSC: 93B45 93B51 26A33 PDFBibTeX XMLCite \textit{A. P. Singh} et al., in: Applied fractional calculus in identification and control. Cham: Springer. 135--147 (2022; Zbl 1504.93098) Full Text: DOI
Ostalczyk, Piotr; Pawluszewicz, Ewa Fractional systems: theoretical foundations. (English) Zbl 1508.93150 Kulczycki, Piotr (ed.) et al., Fractional dynamical systems: methods, algorithms and applications. Cham: Springer. Stud. Syst. Decis. Control 402, 27-73 (2022). MSC: 93C15 26A33 93D05 93C05 PDFBibTeX XMLCite \textit{P. Ostalczyk} and \textit{E. Pawluszewicz}, Stud. Syst. Decis. Control 402, 27--73 (2022; Zbl 1508.93150) Full Text: DOI
Verma, Santosh Kumar; Devarapalli, Ramesh Fractional order PI\(^\lambda\)D\(^\mu\) controller with optimal parameters using modified grey wolf optimizer for AVR system. (English) Zbl 1501.93062 Arch. Control Sci. 32, No. 2, 429-450 (2022). MSC: 93B52 26A33 90C59 PDFBibTeX XMLCite \textit{S. K. Verma} and \textit{R. Devarapalli}, Arch. Control Sci. 32, No. 2, 429--450 (2022; Zbl 1501.93062) Full Text: DOI OA License
Muñoz-Vázquez, Aldo Jonathan; Treesatayapun, Chidentree Fractional data-driven model for stabilization of uncertain discrete-time nonlinear systems. (English) Zbl 1501.93109 J. Franklin Inst. 359, No. 17, 9690-9702 (2022). MSC: 93D05 93C57 26A33 93C55 93C41 93C10 PDFBibTeX XMLCite \textit{A. J. Muñoz-Vázquez} and \textit{C. Treesatayapun}, J. Franklin Inst. 359, No. 17, 9690--9702 (2022; Zbl 1501.93109) Full Text: DOI
Deniz, Furkan Nur An effective Smith predictor based fractional-order PID controller design methodology for preservation of design optimality and robust control performance in practice. (English) Zbl 1504.93109 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 53, No. 14, 2948-2966 (2022). MSC: 93B51 93B52 93B35 PDFBibTeX XMLCite \textit{F. N. Deniz}, Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 53, No. 14, 2948--2966 (2022; Zbl 1504.93109) Full Text: DOI
Tian, Qingqing; Zhang, Haixiang; Yang, Xuehua; Jiang, Xiaoxuan An implicit difference scheme for the fourth-order nonlinear non-local PIDEs with a weakly singular kernel. (English) Zbl 1513.65536 Comput. Appl. Math. 41, No. 7, Paper No. 328, 32 p. (2022). MSC: 65R20 65M06 35R11 45K05 PDFBibTeX XMLCite \textit{Q. Tian} et al., Comput. Appl. Math. 41, No. 7, Paper No. 328, 32 p. (2022; Zbl 1513.65536) Full Text: DOI
Melchor-Aguilar, Daniel; Mendiola-Fuentes, Jessica Mikhailov stability criterion for fractional commensurate order systems with delays. (English) Zbl 1497.93167 J. Franklin Inst. 359, No. 15, 8395-8408 (2022). MSC: 93D05 93C05 26A33 PDFBibTeX XMLCite \textit{D. Melchor-Aguilar} and \textit{J. Mendiola-Fuentes}, J. Franklin Inst. 359, No. 15, 8395--8408 (2022; Zbl 1497.93167) Full Text: DOI
He, Jia Wei; Peng, Li Time discrete abstract fractional Volterra equations via resolvent sequences. (English) Zbl 1507.45001 Mediterr. J. Math. 19, No. 5, Paper No. 207, 16 p. (2022). MSC: 45D05 26A33 PDFBibTeX XMLCite \textit{J. W. He} and \textit{L. Peng}, Mediterr. J. Math. 19, No. 5, Paper No. 207, 16 p. (2022; Zbl 1507.45001) Full Text: DOI
Liu, Chang; Liu, Da-Yan; Boutat, Driss; Wang, Yong; Wu, Ze-Hao Non-asymptotic and robust estimation for a class of nonlinear fractional-order systems. (English) Zbl 1498.93316 Commun. Nonlinear Sci. Numer. Simul. 115, Article ID 106752, 16 p. (2022). MSC: 93C15 34A08 93C10 PDFBibTeX XMLCite \textit{C. Liu} et al., Commun. Nonlinear Sci. Numer. Simul. 115, Article ID 106752, 16 p. (2022; Zbl 1498.93316) Full Text: DOI
Singhal, Kartik; Kumar, Vineet; Rana, K. P. S. Robust trajectory tracking control of non-holonomic wheeled mobile robots using an adaptive fractional order parallel fuzzy PID controller. (English) Zbl 1491.93068 J. Franklin Inst. 359, No. 9, 4160-4215 (2022). MSC: 93C40 93C42 93B52 93C85 PDFBibTeX XMLCite \textit{K. Singhal} et al., J. Franklin Inst. 359, No. 9, 4160--4215 (2022; Zbl 1491.93068) Full Text: DOI
Swarnakar, Jaydeep Discrete-time realization of fractional-order proportional integral controller for a class of fractional-order system. (English) Zbl 1498.93443 Numer. Algebra Control Optim. 12, No. 2, 309-320 (2022). MSC: 93C55 93B52 26A33 PDFBibTeX XMLCite \textit{J. Swarnakar}, Numer. Algebra Control Optim. 12, No. 2, 309--320 (2022; Zbl 1498.93443) Full Text: DOI
Long, Le Dinh; Luc, Nguyen Hoang; Tatar, Salih; Baleanu, Dumitru; Can, Nguyen Huu An inverse source problem for pseudo-parabolic equation with Caputo derivative. (English) Zbl 1490.35542 J. Appl. Math. Comput. 68, No. 2, 739-765 (2022). MSC: 35R30 35K70 35R11 47J06 47H10 65M32 PDFBibTeX XMLCite \textit{L. D. Long} et al., J. Appl. Math. Comput. 68, No. 2, 739--765 (2022; Zbl 1490.35542) Full Text: DOI
Benia, Kheireddine; Beddani, Moustafa; Fečkan, Michal; Hedia, Benaouda Existence result for a problem involving \(\psi \)-Riemann-Liouville fractional derivative on unbounded domain. (English) Zbl 1500.26005 Differ. Equ. Appl. 14, No. 1, 83-97 (2022). MSC: 26A33 34A08 47H10 PDFBibTeX XMLCite \textit{K. Benia} et al., Differ. Equ. Appl. 14, No. 1, 83--97 (2022; Zbl 1500.26005) Full Text: DOI
Jin, Zhanyong; Cao, Huanhuan; Xia, Shuang; Liu, Qingyue; Jia, Menglin; Wang, Rui Research on the synergy measurement for wetland ecological-economic-social composite system based on fractional order dynamic system. (English) Zbl 1490.92129 Discrete Dyn. Nat. Soc. 2022, Article ID 1934271, 8 p. (2022). MSC: 92D40 PDFBibTeX XMLCite \textit{Z. Jin} et al., Discrete Dyn. Nat. Soc. 2022, Article ID 1934271, 8 p. (2022; Zbl 1490.92129) Full Text: DOI OA License
Zeng, Min-Li; Yang, Jun-Feng; Zhang, Guo-Feng On \(\tau\) matrix-based approximate inverse preconditioning technique for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. (English) Zbl 1485.65029 J. Comput. Appl. Math. 407, Article ID 114088, 21 p. (2022). MSC: 65F08 65F10 15B05 PDFBibTeX XMLCite \textit{M.-L. Zeng} et al., J. Comput. Appl. Math. 407, Article ID 114088, 21 p. (2022; Zbl 1485.65029) Full Text: DOI
Yakoub, Z.; Aoun, M.; Amairi, M.; Chetoui, M. Identification of continuous-time fractional models from noisy input and output signals. (English) Zbl 1480.93432 Naifar, Omar (ed.) et al., Fractional order systems – control theory and applications. Fundamentals and applications. Cham: Springer. Stud. Syst. Decis. Control 364, 181-216 (2022). MSC: 93E12 26A33 93E24 90C30 PDFBibTeX XMLCite \textit{Z. Yakoub} et al., Stud. Syst. Decis. Control 364, 181--216 (2022; Zbl 1480.93432) Full Text: DOI
Saidi, B.; Yacoub, Z.; Amairi, M.; Aoun, M. Constant phase based design of robust fractional PI controller for uncertain first order plus dead time systems. (English) Zbl 1480.93144 Naifar, Omar (ed.) et al., Fractional order systems – control theory and applications. Fundamentals and applications. Cham: Springer. Stud. Syst. Decis. Control 364, 159-179 (2022). MSC: 93B52 93D09 26A33 65K10 93C43 PDFBibTeX XMLCite \textit{B. Saidi} et al., Stud. Syst. Decis. Control 364, 159--179 (2022; Zbl 1480.93144) Full Text: DOI
Wardi, Mohamed Lazhar; Abdelkrim, Rihab; Abdelkrim, Mohamed Naceur Fractional order CRONE and PID controllers design for nonlinear systems based on multimodel approach. (English) Zbl 1480.93147 Naifar, Omar (ed.) et al., Fractional order systems – control theory and applications. Fundamentals and applications. Cham: Springer. Stud. Syst. Decis. Control 364, 123-142 (2022). MSC: 93B52 93B35 26A33 93C10 PDFBibTeX XMLCite \textit{M. L. Wardi} et al., Stud. Syst. Decis. Control 364, 123--142 (2022; Zbl 1480.93147) Full Text: DOI
Tian, Yang; Wang, Zhi-Bo; Liu, Da-Yan; Boutat, Driss; Liu, Hao-Ran Non-asymptotic estimation for fractional integrals of noisy accelerations for fractional order vibration systems. (English) Zbl 1480.93419 Automatica 135, Article ID 109996, 9 p. (2022). MSC: 93E10 93B35 26A33 70L05 PDFBibTeX XMLCite \textit{Y. Tian} et al., Automatica 135, Article ID 109996, 9 p. (2022; Zbl 1480.93419) Full Text: DOI
Dwivedi, Prakash; Pandey, Sandeep Tuning rules: graphical analysis and experimental validation of a simplified fractional order controller for a class of open-loop unstable systems. (English) Zbl 07886887 Asian J. Control 23, No. 5, 2293-2310 (2021). MSC: 93-XX PDFBibTeX XMLCite \textit{P. Dwivedi} and \textit{S. Pandey}, Asian J. Control 23, No. 5, 2293--2310 (2021; Zbl 07886887) Full Text: DOI
Peng, Chenchen; Zhang, Weihai Back-stepping stabilization of fractional-order triangular system with applications to chaotic systems. (English) Zbl 07878793 Asian J. Control 23, No. 1, 143-154 (2021). MSC: 93-XX PDFBibTeX XMLCite \textit{C. Peng} and \textit{W. Zhang}, Asian J. Control 23, No. 1, 143--154 (2021; Zbl 07878793) Full Text: DOI
Alassafi, Madini O.; Ha, Shumin; Alsaadi, Fawaz E.; Ahmad, Adil M.; Cao, Jinde Fuzzy synchronization of fractional-order chaotic systems using finite-time command filter. (English) Zbl 1533.93415 Inf. Sci. 579, 325-346 (2021). MSC: 93C42 93C40 93E11 93B52 34H10 PDFBibTeX XMLCite \textit{M. O. Alassafi} et al., Inf. Sci. 579, 325--346 (2021; Zbl 1533.93415) Full Text: DOI
Jin, Ting; Xia, Hongxuan; Deng, Wu; Li, Yuangang; Chen, Hao Uncertain fractional-order multi-objective optimization based on reliability analysis and application to fractional-order circuit with Caputo type. (English) Zbl 1509.94175 Circuits Syst. Signal Process. 40, No. 12, 5955-5982 (2021). MSC: 94C05 60K20 93E03 PDFBibTeX XMLCite \textit{T. Jin} et al., Circuits Syst. Signal Process. 40, No. 12, 5955--5982 (2021; Zbl 1509.94175) Full Text: DOI
Laarem, Guessas A new 4-D hyper chaotic system generated from the 3-D Rössler chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos synchronization using optimized fractional order sliding mode control. (A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos synchronization using optimized fractional order sliding mode control.) (English) Zbl 1498.93077 Chaos Solitons Fractals 152, Article ID 111437, 10 p. (2021). MSC: 93B12 93B52 26A33 34H10 PDFBibTeX XMLCite \textit{G. Laarem}, Chaos Solitons Fractals 152, Article ID 111437, 10 p. (2021; Zbl 1498.93077) Full Text: DOI
Niazi, Azmat Ullah Khan; Iqbal, Naveed; Mohammed, Wael W. Optimal control of nonlocal fractional evolution equations in the \(\alpha\)-norm of order \((1,2)\). (English) Zbl 1494.34177 Adv. Difference Equ. 2021, Paper No. 142, 22 p. (2021). MSC: 34K37 26A33 34A08 93B05 PDFBibTeX XMLCite \textit{A. U. K. Niazi} et al., Adv. Difference Equ. 2021, Paper No. 142, 22 p. (2021; Zbl 1494.34177) Full Text: DOI OA License
Huang, Conggui; Wang, Fei; Zheng, Zhaowen Exponential stability for nonlinear fractional order sampled-data control systems with its applications. (English) Zbl 1498.93659 Chaos Solitons Fractals 151, Article ID 111265, 10 p. (2021). MSC: 93D23 34A08 93C57 PDFBibTeX XMLCite \textit{C. Huang} et al., Chaos Solitons Fractals 151, Article ID 111265, 10 p. (2021; Zbl 1498.93659) Full Text: DOI
Harikrishnan, S.; Kanagarajan, K.; Elsayed, E. M. Study on fractional random differential equations with not instantaneous impulses. (English) Zbl 1487.34016 Tbil. Math. J. 14, No. 2, 117-126 (2021). MSC: 34A08 34A12 34A37 34D20 34F05 PDFBibTeX XMLCite \textit{S. Harikrishnan} et al., Tbil. Math. J. 14, No. 2, 117--126 (2021; Zbl 1487.34016) Full Text: DOI
Kokane, Tejas; Saha, Ashesh Fractional order PD control of friction-induced vibrations in a continuous system. (English) Zbl 1485.93188 J. Appl. Nonlinear Dyn. 10, No. 3, 413-429 (2021). MSC: 93B52 26A33 70F40 PDFBibTeX XMLCite \textit{T. Kokane} and \textit{A. Saha}, J. Appl. Nonlinear Dyn. 10, No. 3, 413--429 (2021; Zbl 1485.93188) Full Text: DOI
Rhouma, Aymen; Hafsi, Sami; Laabidi, Kaouther Stabilizing and robust fractional PID controller synthesis for uncertain first-order plus time-delay systems. (English) Zbl 1512.93110 Math. Probl. Eng. 2021, Article ID 9940634, 10 p. (2021). MSC: 93D09 93C80 PDFBibTeX XMLCite \textit{A. Rhouma} et al., Math. Probl. Eng. 2021, Article ID 9940634, 10 p. (2021; Zbl 1512.93110) Full Text: DOI
Birs, Isabela; Nascu, Ioan; Dulf, Eva; Muresan, Cristina Comparison of various fractional order controllers on a poorly damped system. (English) Zbl 1480.93134 Awrejcewicz, Jan (ed.), Perspectives in dynamical systems III: control and stability. Selected papers based on the presentations at the 15th international conference on dynamical systems – theory and applications, DSTA, Łódź, Poland, December 2–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 364, 219-231 (2021). MSC: 93B52 26A33 70L05 PDFBibTeX XMLCite \textit{I. Birs} et al., Springer Proc. Math. Stat. 364, 219--231 (2021; Zbl 1480.93134) Full Text: DOI
Zhang, Xuefeng; Zhang, Yingbo Fault-tolerant control against actuator failures for uncertain singular fractional order systems. (English) Zbl 1478.93217 Numer. Algebra Control Optim. 11, No. 1, 1-12 (2021). MSC: 93B52 93B53 93C41 26A33 28A80 PDFBibTeX XMLCite \textit{X. Zhang} and \textit{Y. Zhang}, Numer. Algebra Control Optim. 11, No. 1, 1--12 (2021; Zbl 1478.93217) Full Text: DOI
Wei, Yan-Qiao; Liu, Da-Yan; Boutat, Driss; Liu, Hao-Ran; Wu, Ze-Hao Modulating functions based model-free fractional order differentiators using a sliding integration window. (English) Zbl 1478.93271 Automatica 130, Article ID 109679, 9 p. (2021). MSC: 93C15 26A33 PDFBibTeX XMLCite \textit{Y.-Q. Wei} et al., Automatica 130, Article ID 109679, 9 p. (2021; Zbl 1478.93271) Full Text: DOI
Zhou, Yong; He, Jia Wei New results on controllability of fractional evolution systems with order \(\alpha\in (1,2)\). (English) Zbl 1481.34081 Evol. Equ. Control Theory 10, No. 3, 491-509 (2021). MSC: 34G20 34A08 26A33 93B05 34H05 PDFBibTeX XMLCite \textit{Y. Zhou} and \textit{J. W. He}, Evol. Equ. Control Theory 10, No. 3, 491--509 (2021; Zbl 1481.34081) Full Text: DOI
Shao, Xin-Hui; Li, Yu-Han; Shen, Hai-Long Quasi-Toeplitz trigonometric transform splitting methods for spatial fractional diffusion equations. (English) Zbl 1500.65047 J. Sci. Comput. 89, No. 1, Paper No. 10, 24 p. (2021). MSC: 65M06 65N06 15B05 15A18 65F08 65F10 60K50 26A33 35R11 PDFBibTeX XMLCite \textit{X.-H. Shao} et al., J. Sci. Comput. 89, No. 1, Paper No. 10, 24 p. (2021; Zbl 1500.65047) Full Text: DOI
Ye, Hailong; Liu, Qiang; Chen, Zhi-Min Global existence of solutions of the time fractional Cahn-Hilliard equation in \(\mathbb{R}^3\). (English) Zbl 1470.35420 J. Evol. Equ. 21, No. 2, 2377-2411 (2021). MSC: 35R11 35K30 35K58 35K90 PDFBibTeX XMLCite \textit{H. Ye} et al., J. Evol. Equ. 21, No. 2, 2377--2411 (2021; Zbl 1470.35420) Full Text: DOI
Zeng, Min-Li; Zhang, Guo-Feng Scaled diagonal-times-Toeplitz splitting iteration methods for solving discretized spatial fractional diffusion equations. (English) Zbl 1490.65150 Math. Methods Appl. Sci. 44, No. 4, 3225-3242 (2021). MSC: 65L99 34A08 PDFBibTeX XMLCite \textit{M.-L. Zeng} and \textit{G.-F. Zhang}, Math. Methods Appl. Sci. 44, No. 4, 3225--3242 (2021; Zbl 1490.65150) Full Text: DOI
Boubidi, Assia; Kechida, Sihem; Tebbikh, Hicham Analytical study of resonance regions for second kind commensurate fractional systems. (English) Zbl 1471.93136 Discrete Contin. Dyn. Syst., Ser. B 26, No. 7, 3579-3594 (2021). MSC: 93C15 26A33 34A08 34D20 93C80 PDFBibTeX XMLCite \textit{A. Boubidi} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 7, 3579--3594 (2021; Zbl 1471.93136) Full Text: DOI
Lichae, Bijan Hasani; Biazar, Jafar; Ayati, Zainab Asymptotic decomposition method for fractional order Riccati differential equation. (English) Zbl 1474.65262 Comput. Methods Differ. Equ. 9, No. 1, 63-78 (2021). MSC: 65L99 34A08 PDFBibTeX XMLCite \textit{B. H. Lichae} et al., Comput. Methods Differ. Equ. 9, No. 1, 63--78 (2021; Zbl 1474.65262) Full Text: DOI
Sain, Debdoot; Mohan, B. M. A simple approach to mathematical modelling of integer order and fractional order fuzzy PID controllers using one-dimensional input space and their experimental realization. (English) Zbl 1464.93040 J. Franklin Inst. 358, No. 7, 3726-3756 (2021). MSC: 93C42 93B52 93C15 26A33 PDFBibTeX XMLCite \textit{D. Sain} and \textit{B. M. Mohan}, J. Franklin Inst. 358, No. 7, 3726--3756 (2021; Zbl 1464.93040) Full Text: DOI
Ha, Shumin; Chen, Liangyun; Liu, Heng Command filtered adaptive neural network synchronization control of fractional-order chaotic systems subject to unknown dead zones. (English) Zbl 1464.93075 J. Franklin Inst. 358, No. 7, 3376-3402 (2021). MSC: 93D99 93C40 93B70 93C15 26A33 PDFBibTeX XMLCite \textit{S. Ha} et al., J. Franklin Inst. 358, No. 7, 3376--3402 (2021; Zbl 1464.93075) Full Text: DOI
Sun, Ya-Hui; Yang, Yong-Ge; Zhang, Ying; Xu, Wei Probabilistic response of a fractional-order hybrid vibration energy harvester driven by random excitation. (English) Zbl 1458.74061 Chaos 31, No. 1, Article ID 013111, 13 p. (2021). MSC: 74H45 74F15 74S40 74S60 PDFBibTeX XMLCite \textit{Y.-H. Sun} et al., Chaos 31, No. 1, Article ID 013111, 13 p. (2021; Zbl 1458.74061) Full Text: DOI
Parovik, R. I. On a finite-difference scheme for an hereditary oscillatory equation. (English. Russian original) Zbl 1464.65073 J. Math. Sci., New York 253, No. 4, 547-557 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 154, 89-98 (2018). MSC: 65L05 65L20 PDFBibTeX XMLCite \textit{R. I. Parovik}, J. Math. Sci., New York 253, No. 4, 547--557 (2021; Zbl 1464.65073); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 154, 89--98 (2018) Full Text: DOI
Jakovljević, Boris; Lino, Paolo; Maione, Guido Control of double-loop permanent magnet synchronous motor drives by optimized fractional and distributed-order PID controllers. (English) Zbl 1458.93081 Eur. J. Control 58, 232-244 (2021). MSC: 93B52 26A33 PDFBibTeX XMLCite \textit{B. Jakovljević} et al., Eur. J. Control 58, 232--244 (2021; Zbl 1458.93081) Full Text: DOI
Wei, Yan-Qiao; Liu, Da-Yan; Boutat, Driss; Liu, Hao-Ran; Lv, Chunwan Modulating functions based differentiator of the pseudo-state for a class of fractional order linear systems. (English) Zbl 1461.93210 J. Comput. Appl. Math. 384, Article ID 113161, 18 p. (2021). MSC: 93C15 26A33 93C05 PDFBibTeX XMLCite \textit{Y.-Q. Wei} et al., J. Comput. Appl. Math. 384, Article ID 113161, 18 p. (2021; Zbl 1461.93210) Full Text: DOI
Lopes, António M.; Machado, J. A. Tenreiro Multidimensional scaling analysis of generalized mean discrete-time fractional order controllers. (English) Zbl 1458.93114 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105657, 12 p. (2021). MSC: 93C15 26A33 93C55 PDFBibTeX XMLCite \textit{A. M. Lopes} and \textit{J. A. T. Machado}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105657, 12 p. (2021; Zbl 1458.93114) Full Text: DOI
Shen, Yaohua; Wang, Yunjian; Yuan, Nana A graphical approach for stability and robustness analysis in commensurate and incommensurate fractional-order systems. (English) Zbl 07872662 Asian J. Control 22, No. 3, 1241-1252 (2020). MSC: 93-XX PDFBibTeX XMLCite \textit{Y. Shen} et al., Asian J. Control 22, No. 3, 1241--1252 (2020; Zbl 07872662) Full Text: DOI
Rydel, Marek; Stanisławski, Rafał Computation of controllability and observability gramians in modeling of discrete-time noncommensurate fractional-order systems. (English) Zbl 07872646 Asian J. Control 22, No. 3, 1052-1064 (2020). MSC: 93-XX PDFBibTeX XMLCite \textit{M. Rydel} and \textit{R. Stanisławski}, Asian J. Control 22, No. 3, 1052--1064 (2020; Zbl 07872646) Full Text: DOI
Gallegos, Javier A.; Aguila-Camacho, Norelys; Duarte-Mermoud, Manuel A. Robust adaptive passivity-based PI\(^\lambda\)D control. (English) Zbl 07839162 Int. J. Adapt. Control Signal Process. 34, No. 11, 1572-1589 (2020). MSC: 93C10 93D15 93C15 34A08 93C40 PDFBibTeX XMLCite \textit{J. A. Gallegos} et al., Int. J. Adapt. Control Signal Process. 34, No. 11, 1572--1589 (2020; Zbl 07839162) Full Text: DOI
Rahmanipour, Pourya; Ghadiri, Hamid Stability analysis for a class of fractional-order nonlinear systems with time-varying delays. (English) Zbl 1497.93170 Soft Comput. 24, No. 22, 17445-17453 (2020); correction ibid. 24, No. 22, 17455 (2020). MSC: 93D05 93C10 26A33 93C43 PDFBibTeX XMLCite \textit{P. Rahmanipour} and \textit{H. Ghadiri}, Soft Comput. 24, No. 22, 17445--17453 (2020; Zbl 1497.93170) Full Text: DOI
Balootaki, Mohammad Ahmadi; Rahmani, Hossein; Moeinkhah, Hossein; Mohammadzadeh, Ardashir On the synchronization and stabilization of fractional-order chaotic systems: recent advances and future perspectives. (English) Zbl 07531213 Physica A 551, Article ID 124203, 16 p. (2020). MSC: 82-XX PDFBibTeX XMLCite \textit{M. A. Balootaki} et al., Physica A 551, Article ID 124203, 16 p. (2020; Zbl 07531213) Full Text: DOI
Coronel-Escamilla, Antonio; Gomez-Aguilar, Jose Francisco; Stamova, Ivanka; Santamaria, Fidel Fractional order controllers increase the robustness of closed-loop deep brain stimulation systems. (English) Zbl 1495.92019 Chaos Solitons Fractals 140, Article ID 110149, 10 p. (2020). MSC: 92C20 26A33 34A08 92C50 PDFBibTeX XMLCite \textit{A. Coronel-Escamilla} et al., Chaos Solitons Fractals 140, Article ID 110149, 10 p. (2020; Zbl 1495.92019) Full Text: DOI Link
Nagarsheth, Shaival Hemant; Sharma, Shambhu Nath Control of non-minimum phase systems with dead time: a fractional system viewpoint. (English) Zbl 1483.93494 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 51, No. 11, 1905-1928 (2020). MSC: 93D15 26A33 93E11 PDFBibTeX XMLCite \textit{S. H. Nagarsheth} and \textit{S. N. Sharma}, Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 51, No. 11, 1905--1928 (2020; Zbl 1483.93494) Full Text: DOI
Salleh, Wedad; Kiliçman, Adem On geometry of volume elements and fractional differentiable manifolds. (English) Zbl 1490.58001 Thai J. Math. 18, No. 2, 783-793 (2020). Reviewer: Vagn Lundsgaard Hansen (Lyngby) MSC: 58A05 26A33 58D17 PDFBibTeX XMLCite \textit{W. Salleh} and \textit{A. Kiliçman}, Thai J. Math. 18, No. 2, 783--793 (2020; Zbl 1490.58001) Full Text: Link
Atıcı, Ferhan M.; Zhoroev, Tilekbek Controllability and observability of time-invariant linear nabla fractional systems. (English) Zbl 1488.93007 Fract. Differ. Calc. 10, No. 1, 19-39 (2020). MSC: 93B05 93B07 26A33 39A13 93C55 PDFBibTeX XMLCite \textit{F. M. Atıcı} and \textit{T. Zhoroev}, Fract. Differ. Calc. 10, No. 1, 19--39 (2020; Zbl 1488.93007) Full Text: DOI
Wang, Huiwen; Li, Fang Nonlinear boundary value problems for mixed-type fractional equations and Ulam-Hyers stability. (English) Zbl 1475.34009 Open Math. 18, 916-929 (2020). MSC: 34A08 34A37 34B10 PDFBibTeX XMLCite \textit{H. Wang} and \textit{F. Li}, Open Math. 18, 916--929 (2020; Zbl 1475.34009) Full Text: DOI OA License
Wang, Yongqing; Wu, Yonghong Positive solutions of fractional differential equation boundary value problems at resonance. (English) Zbl 1489.34022 J. Appl. Anal. Comput. 10, No. 6, 2459-2475 (2020). MSC: 34A08 26A33 34B18 47N20 PDFBibTeX XMLCite \textit{Y. Wang} and \textit{Y. Wu}, J. Appl. Anal. Comput. 10, No. 6, 2459--2475 (2020; Zbl 1489.34022) Full Text: DOI
Zhang, Xuefeng; Zhao, Zeli Normalization and stabilization for rectangular singular fractional order T-S fuzzy systems. (English) Zbl 1464.93043 Fuzzy Sets Syst. 381, 140-153 (2020). MSC: 93C42 93C15 34A08 93D20 PDFBibTeX XMLCite \textit{X. Zhang} and \textit{Z. Zhao}, Fuzzy Sets Syst. 381, 140--153 (2020; Zbl 1464.93043) Full Text: DOI
Hou, Chuanjing; Liu, Xiaoping; Wang, Huanqing Adaptive fault tolerant control for a class of uncertain fractional-order systems based on disturbance observer. (English) Zbl 1466.93088 Int. J. Robust Nonlinear Control 30, No. 8, 3436-3450 (2020). MSC: 93C40 93B35 93C41 93C15 26A33 93B53 PDFBibTeX XMLCite \textit{C. Hou} et al., Int. J. Robust Nonlinear Control 30, No. 8, 3436--3450 (2020; Zbl 1466.93088) Full Text: DOI
Li, Zongyang; Wei, Yiheng; Zhou, Xi; Wang, Jiachang; Wang, Jianli; Wang, Yong Differential flatness-based ADRC scheme for underactuated fractional-order systems. (English) Zbl 1465.93096 Int. J. Robust Nonlinear Control 30, No. 7, 2832-2849 (2020). MSC: 93C15 26A33 93B53 PDFBibTeX XMLCite \textit{Z. Li} et al., Int. J. Robust Nonlinear Control 30, No. 7, 2832--2849 (2020; Zbl 1465.93096) Full Text: DOI
Grace, Said Rezk; Alzabut, Jehad; Punitha, Sakthivel; Muthulakshmi, Velu; Adıgüzel, Hakan On the nonoscillatory behavior of solutions of three classes of fractional difference equations. (English) Zbl 1464.39006 Opusc. Math. 40, No. 5, 549-568 (2020). MSC: 39A13 39A21 PDFBibTeX XMLCite \textit{S. R. Grace} et al., Opusc. Math. 40, No. 5, 549--568 (2020; Zbl 1464.39006) Full Text: DOI
Allagui, Mohamed; Yousfi, Najah; Derbel, Nabil; Melchior, Pierre Tuning of fractional order controller and prefilter in MIMO robust motion control: SCARA robot. (English) Zbl 1461.93340 Ghommam, Jawhar (ed.) et al., New trends in robot control. Singapore: Springer. Stud. Syst. Decis. Control 270, 3-18 (2020). MSC: 93C85 93C35 93C15 34A08 PDFBibTeX XMLCite \textit{M. Allagui} et al., Stud. Syst. Decis. Control 270, 3--18 (2020; Zbl 1461.93340) Full Text: DOI
Bhairat, Sandeep P. New approach to existence of solution for weighted Cauchy-type problem. (English) Zbl 1488.34024 J. Math. Model. 8, No. 4, 377-391 (2020). MSC: 34A08 26A33 34A45 34A12 PDFBibTeX XMLCite \textit{S. P. Bhairat}, J. Math. Model. 8, No. 4, 377--391 (2020; Zbl 1488.34024) Full Text: DOI arXiv
Nagarsheth, Shaival Hemant; Sharma, Shambhu Nath The combined effect of fractional filter and Smith predictor for enhanced closed-loop performance of integer order time-delay systems: some investigations. (English) Zbl 1457.93055 Arch. Control Sci. 30, No. 1, 47-76 (2020). MSC: 93C43 93B52 93C35 PDFBibTeX XMLCite \textit{S. H. Nagarsheth} and \textit{S. N. Sharma}, Arch. Control Sci. 30, No. 1, 47--76 (2020; Zbl 1457.93055) Full Text: DOI OA License