×

Interface conditions for fast-reaction fronts in wet porous mineral materials: The case of concrete carbonation. (English) Zbl 1176.76140

Summary: Reaction-diffusion processes, where slow diffusion balances fast reaction, usually exhibit internal loci where the reactions are concentrated. Some modeling and simulation aspects of using kinetic free-boundary conditions to drive fast carbonation reaction fronts into unsaturated porous cement-based materials are discussed. Providing full control on the velocity of the reaction front, such conditions offer a rich description of the coupling between transport, reaction, and change in the shape of the a priori unknown time-dependent regions. New models are formulated and validated by means of numerical simulations and experimental data.

MSC:

76V05 Reaction effects in flows
76S05 Flows in porous media; filtration; seepage
76R50 Diffusion

Software:

ALBERTA; bvp4c
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ortoleva P (1994) Geochemical self-organization. OUP, Oxford
[2] Ball JM, Knderlehrer D, Podio-Guidugli P, Slemrod M (eds) (1999) Evolving phase interfaces in solids. Springer, Berlin
[3] Tilley BS, Kriegsmann GA (2001) Microwave-enhanced chemical vapor infiltration: a sharp interface model. J Eng Math 534: 971–989 · Zbl 0985.80005
[4] Dewynne JN, Fowler AC, Hagan PS (1993) Multiple reaction fronts in the oxidation-reduction of iron-rich uranium ores. SIAM J Appl Math 534: 971–989 · Zbl 0782.76086 · doi:10.1137/0153048
[5] Visintin A (1986) A new model for supercooling and superheating effects IMA. J Appl Math 36: 141–157 · Zbl 0619.35116
[6] Evans JD, King JR (1996) On the derivation of heterogeneous reaction kinetics from a homogeneous reaction model. SIAM J Appl Math 60(6): 1977–1996 · Zbl 0961.76089 · doi:10.1137/S003613999834649X
[7] Clarelli F, Fasano A, Natalini R (2008) Mathematics and monuments conservation: free boundary models of marble sulphation. SIAM J Appl Math 69(1): 149–168 · Zbl 1157.76049 · doi:10.1137/070695125
[8] Muntean A, Böhm M (2006) Dynamics of a moving reaction interface in a concrete wall. In: Rodrigues JF et al (eds) Free and moving boundary problems. Theory and applications. Proceedings of the conference FBP 2005, Int Ser Numer Math, vol 154. Birkhäuser, Basel, pp 317–326 · Zbl 1116.35367
[9] Muntean A (2006) A moving-boundary problem: modeling, analysis and simulation of concrete carbonation. Cuvillier Verlag, Göttingen
[10] Muntean A (2007) Concentration blow up in a two-phase non-equilibrium model with source term. Meccanica 42: 409–411 · Zbl 1171.80005 · doi:10.1007/s11012-006-9048-0
[11] Muntean A (2009) Well-posedness of a moving-boundary problem with two moving reaction strips. Nonlinear Anal Real World Appl 10(4): 2541–2557 · Zbl 1163.35335 · doi:10.1016/j.nonrwa.2008.05.010
[12] Taylor HFW (1997) Cement chemistry. Thomas Telford, London
[13] Salhan A, Billingham J, King AC (2003) The effect of a retarder on the early stages of the hydration of calcium silicate. J Eng Math 45: 367–377 · Zbl 1029.92029 · doi:10.1023/A:1022647524742
[14] Papadakis VG, Vayenas CG, Fardis MN (1989) A reaction engineering approach to the problem of concrete carbonation. AIChE J 35: 1639–1650 · doi:10.1002/aic.690351008
[15] Lagerblad B (2005) Carbon dioxide uptake during concrete life cycle-State of the art. NI-project 03018, Swedish Cement and Concrete Research Institute, Stockholm
[16] Peter M, Muntean A, Meier S, Böhm M (2008) Competition of several carbonaton reactions: a parametric study. Cement Concr Res 38: 1385–1393 · doi:10.1016/j.cemconres.2008.09.003
[17] Meier SA, Peter MA, Muntean A, Böhm M (2007) Dynamics of the internal reaction layer arising during carbonation of concrete. Chem Eng Sci 62: 1125–1137 · doi:10.1016/j.ces.2006.11.014
[18] Saetta AV, Schrefler BA, Vitaliani RV (1995) 2D model for carbonation, moisture/heat flow in porous materials. Cement Concr Res 32: 939–941
[19] Matkowsky BJ, Sivashinsky GI (1979) An asymptotic deriavtion of two models in flame theory associated with the contant density approximation. SIAM J Appl Math 37(3): 686–699 · Zbl 0437.76065 · doi:10.1137/0137051
[20] Matkowsky BJ, Sivashinsky GI (1978) Propagation of a pulsating reaction front in solid fuel combustion. SIAM J Appl Math 35(3): 465–478 · Zbl 0404.76074 · doi:10.1137/0135038
[21] Chaussadent T (1999) États des lieux et réflexions sur la carbonatation du beton armé. LCPC, Paris
[22] Böhm M, Kropp J, Muntean A (2003) A two-reaction-zones moving-interface model for predicting Ca(OH)2 carbonation in concrete. Berichte aus der Technomathematik, University of Bremen, 03–04
[23] Schmidt A, Muntean A, Böhm M (2007) Moving carbonation fronts around corners: a self-adaptive finite element approach. In: 5th International Essen Workshop, Transcon, pp 467–476
[24] Schmidt A, Siebert KG (2005) Design of adaptive finite element software: the finite element toolbox ALBERTA. LNCSE Series 42 Springer, Verlag, Berlin · Zbl 1068.65138
[25] Froment G, Bischoff KB (1996) Chemical reactor analysis and design. Wiley, New York
[26] Tuutti K (1982) Corrosion of steel in concrete. Swedish Cement and Concrete Research Institute (CBI), Stockholm
[27] Meirmanov A (1992) The Stefan problem. Walter de Gruyter, Berlin · Zbl 0751.35052
[28] Stefan J (1890) Über die Theorie der Eisbildung. Monatshefte der Mathematik und Physik 1(1): 1–6 · JFM 22.1189.02 · doi:10.1007/BF01692459
[29] Alexiades V, Solomon A (1993) Mathematical modeling of melting and freezing processes. Hemisphere, Washington
[30] Chalmers B (1977) Principles of solidification. Krieger, New York
[31] Borsi I, Farina A, Primicerio M (2006) A rain infiltration model with unilateral boundary condition: qualitative analysis and numerical simulations. Math Methods Appl Sci 29: 2047–2077 · Zbl 1105.35057 · doi:10.1002/mma.763
[32] Gurtin M (1992) Thermomechanics of evolving phase boundaries in the plane. Clarendon, Oxford · Zbl 0800.73022
[33] Bunte D (1994) Zum Karbonatisierungsbedingten Verlust der Dauerhaftigkeit von Aussenbauteuilen aus Stahlbeton. Dissertation, TU Braunschweig
[34] Steffens A, Dinkler D, Ahrens H (2002) Modeling carbonation for corrosion risk prediction of concrete structures. Cement Concr Res 32: 935–941 · doi:10.1016/S0008-8846(02)00728-7
[35] Muntean A, Meier S, Peter M, Böhm M, Kropp J (2006) A note on the limitations of the use of accelerated concrete-carbonation tests for service life predictions. Berichte aus der Technomathematik, University of Bremen, 04–06
[36] Crooks ECM, Dancer EN, Hilhorst D, Mimura M, Ninomiya H (2004) Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions. Nonlinear Anal Real World Appl 5: 645–665 · Zbl 1079.35008 · doi:10.1016/j.nonrwa.2004.01.004
[37] Seidman TI (2009) Interface conditions for a singular reaction-diffusion system. Discret Contin Dyn Syst (to appear) · Zbl 1181.35014
[38] Bazant MZ, Stone HA (2000) Asymptotics of reaction-diffusion fronts with one static and one diffusing reactant. Physica D 147: 95–121 · Zbl 0972.35051 · doi:10.1016/S0167-2789(00)00140-8
[39] Muntean A (2008) On the interplay between fast reaction and slow diffusion in the concrete carbonation process: a matched-asymptotics approach. Meccanica 44(1): 35–46 · Zbl 1163.76445 · doi:10.1007/s11012-008-9140-8
[40] Fila M, Souplet P (2001) Existence of global solutions with slow decay and unbounded free boundary for a superlinear Stefan problem. Interfaces Free Bound 3: 1089–1112 · Zbl 1006.35103
[41] Fife PC (1988) Dynamics of internal layers and diffusive interfaces. SIAM, Philadelphia · Zbl 0684.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.