Boutaayamou, Idriss; Hadri, Aissam; Laghrib, Amine An optimal bilevel optimization model for the generalized total variation and anisotropic tensor parameters selection. (English) Zbl 07617949 Appl. Math. Comput. 438, Article ID 127510, 22 p. (2023). MSC: 68Uxx 49Mxx 90Cxx PDF BibTeX XML Cite \textit{I. Boutaayamou} et al., Appl. Math. Comput. 438, Article ID 127510, 22 p. (2023; Zbl 07617949) Full Text: DOI OpenURL
Zhang, Huayan; Peng, Zhichao Total generalized variation for triangulated surface data. (English) Zbl 07637441 J. Sci. Comput. 93, No. 3, Paper No. 87, 24 p. (2022). MSC: 65D18 68U05 53Z50 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{Z. Peng}, J. Sci. Comput. 93, No. 3, Paper No. 87, 24 p. (2022; Zbl 07637441) Full Text: DOI OpenURL
Tavakkol, E.; Hosseini, S. M.; Hosseini, A. Image denoising via a new hybrid TGV model based on Shannon interpolation. (English) Zbl 07624654 Iran. J. Numer. Anal. Optim. 12, No. 2, 371-396 (2022). MSC: 68Q25 68R10 68U05 PDF BibTeX XML Cite \textit{E. Tavakkol} et al., Iran. J. Numer. Anal. Optim. 12, No. 2, 371--396 (2022; Zbl 07624654) Full Text: DOI OpenURL
Li, Rong; Zheng, Bing The \(\ell_{2,p}\) regularized total variation with overlapping group sparsity prior for image restoration with impulse noise. (English) Zbl 07621832 Numer. Algorithms 91, No. 4, 1779-1814 (2022). MSC: 65-XX PDF BibTeX XML Cite \textit{R. Li} and \textit{B. Zheng}, Numer. Algorithms 91, No. 4, 1779--1814 (2022; Zbl 07621832) Full Text: DOI OpenURL
Liu, Xinwu; Sun, Ting Hybrid non-convex regularizers model for removing multiplicative noise. (English) Zbl 07608999 Comput. Math. Appl. 126, 182-195 (2022). MSC: 94A08 68U10 65K10 94A12 62H35 PDF BibTeX XML Cite \textit{X. Liu} and \textit{T. Sun}, Comput. Math. Appl. 126, 182--195 (2022; Zbl 07608999) Full Text: DOI OpenURL
Wang, Wei; Yang, Yuming; Ng, Michael K. A spatial color compensation model using saturation-value total variation. (English) Zbl 1496.65077 SIAM J. Imaging Sci. 15, No. 3, 1400-1430 (2022). MSC: 65K10 65D18 65J22 68U10 90C26 PDF BibTeX XML Cite \textit{W. Wang} et al., SIAM J. Imaging Sci. 15, No. 3, 1400--1430 (2022; Zbl 1496.65077) Full Text: DOI OpenURL
Shao, Jingfeng; Guo, Zhichang; Yao, Wenjuan; Yan, Dong; Wu, Boying A non-local diffusion equation for noise removal. (English) Zbl 07567988 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 5, 1779-1808 (2022). MSC: 35K59 68U10 PDF BibTeX XML Cite \textit{J. Shao} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 5, 1779--1808 (2022; Zbl 07567988) Full Text: DOI OpenURL
Kong, Linghai; Wei, Suhua A variational method for Abel inversion tomography with mixed Poisson-Laplace-Gaussian noise. (English) Zbl 1492.94021 Inverse Probl. Imaging 16, No. 4, 967-995 (2022). MSC: 94A08 65K10 65R32 49M25 49M41 68U10 PDF BibTeX XML Cite \textit{L. Kong} and \textit{S. Wei}, Inverse Probl. Imaging 16, No. 4, 967--995 (2022; Zbl 1492.94021) Full Text: DOI OpenURL
Wen, Ying; Sun, Jiebao; Guo, Zhichang A new anisotropic fourth-order diffusion equation model based on image features for image denoising. (English) Zbl 1495.35097 Inverse Probl. Imaging 16, No. 4, 895-924 (2022). MSC: 35K35 35K59 68U10 94A08 PDF BibTeX XML Cite \textit{Y. Wen} et al., Inverse Probl. Imaging 16, No. 4, 895--924 (2022; Zbl 1495.35097) Full Text: DOI OpenURL
Afraites, Lekbir; Hadri, Aissam; Laghrib, Amine; Nachaoui, Mourad A non-convex denoising model for impulse and Gaussian noise mixture removing using bi-level parameter identification. (English) Zbl 1492.94017 Inverse Probl. Imaging 16, No. 4, 827-870 (2022). MSC: 94A08 65K10 90C26 35R11 68U10 PDF BibTeX XML Cite \textit{L. Afraites} et al., Inverse Probl. Imaging 16, No. 4, 827--870 (2022; Zbl 1492.94017) Full Text: DOI OpenURL
Li, Xinge; Wei, Suhua; Xu, Haibo; Chen, Chong Hybrid regularized cone-beam reconstruction for axially symmetric object tomography. (English) Zbl 07560255 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 1, 403-419 (2022). MSC: 65R32 65F22 65Z05 68U10 PDF BibTeX XML Cite \textit{X. Li} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 1, 403--419 (2022; Zbl 07560255) Full Text: DOI OpenURL
Zhong, Qiuxiang; Liu, Ryan Wen; Duan, Yuping Spatially adapted first and second order regularization for image reconstruction: from an image surface perspective. (English) Zbl 1492.94028 J. Sci. Comput. 92, No. 2, Paper No. 33, 36 p. (2022). MSC: 94A08 68U10 65K10 PDF BibTeX XML Cite \textit{Q. Zhong} et al., J. Sci. Comput. 92, No. 2, Paper No. 33, 36 p. (2022; Zbl 1492.94028) Full Text: DOI arXiv OpenURL
Shi, Baoli; Gu, Fang; Pang, Zhi-Feng; Zeng, Yuhua Remove the salt and pepper noise based on the high order total variation and the nuclear norm regularization. (English) Zbl 07484232 Appl. Math. Comput. 421, Article ID 126925, 17 p. (2022). MSC: 94Axx 65Kxx 90Cxx PDF BibTeX XML Cite \textit{B. Shi} et al., Appl. Math. Comput. 421, Article ID 126925, 17 p. (2022; Zbl 07484232) Full Text: DOI OpenURL
Li, Rong; Zheng, Bing A spatially adaptive hybrid total variation model for image restoration under Gaussian plus impulse noise. (English) Zbl 07483691 Appl. Math. Comput. 419, Article ID 126862, 22 p. (2022). MSC: 94Axx 68Uxx 90Cxx PDF BibTeX XML Cite \textit{R. Li} and \textit{B. Zheng}, Appl. Math. Comput. 419, Article ID 126862, 22 p. (2022; Zbl 07483691) Full Text: DOI OpenURL
Yoshizawa, Kensuke The critical points of the elastic energy among curves pinned at endpoints. (English) Zbl 1481.74223 Discrete Contin. Dyn. Syst. 42, No. 1, 403-423 (2022). MSC: 74G65 74B05 35Q74 49S05 PDF BibTeX XML Cite \textit{K. Yoshizawa}, Discrete Contin. Dyn. Syst. 42, No. 1, 403--423 (2022; Zbl 1481.74223) Full Text: DOI arXiv OpenURL
Kumar, Santosh; Alam, Khursheed PDE-based hyperbolic-parabolic model for image denoising with forward-backward diffusivity. (English) Zbl 1499.35416 Comput. Methods Differ. Equ. 9, No. 4, 1100-1108 (2021). MSC: 35L70 65M06 76R50 68U10 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{K. Alam}, Comput. Methods Differ. Equ. 9, No. 4, 1100--1108 (2021; Zbl 1499.35416) Full Text: DOI OpenURL
Dong, Gang; Wu, Boying A class of singular diffusion equations based on the convex-nonconvex variation model for noise removal. (English) Zbl 1486.94012 Bound. Value Probl. 2021, Paper No. 8, 39 p. (2021). MSC: 94A08 94A12 68U10 65K10 35K65 49J45 49N10 65D18 PDF BibTeX XML Cite \textit{G. Dong} and \textit{B. Wu}, Bound. Value Probl. 2021, Paper No. 8, 39 p. (2021; Zbl 1486.94012) Full Text: DOI OpenURL
Xu, Maoyuan; Xie, Xiaoping An efficient feature-preserving image denoising algorithm based on a spatial-fractional anisotropic diffusion equation. (English) Zbl 1481.94039 East Asian J. Appl. Math. 11, No. 4, 788-807 (2021). MSC: 94A08 35R11 PDF BibTeX XML Cite \textit{M. Xu} and \textit{X. Xie}, East Asian J. Appl. Math. 11, No. 4, 788--807 (2021; Zbl 1481.94039) Full Text: DOI OpenURL
Qin, Jing; Guo, Weihong Two-stage geometric information guided image reconstruction. (English) Zbl 1483.94012 Demir, Ilke (ed.) et al., Advances in data science. Selected papers based on the presentations at the 2nd women in data science and mathematics workshop, WiSDM, Providence, Rhode Island, USA, July 29 – August 2, 2019, and the 3rd women in shape, WiSh workshop, Trier, Germany, July 16–20, 2018. Cham: Springer. Assoc. Women Math. Ser. 26, 3-23 (2021). MSC: 94A08 94A12 62H30 62H35 68U10 68T10 PDF BibTeX XML Cite \textit{J. Qin} and \textit{W. Guo}, Assoc. Women Math. Ser. 26, 3--23 (2021; Zbl 1483.94012) Full Text: DOI arXiv OpenURL
Bergmann, Ronny; Herzog, Roland; Silva Louzeiro, Maurício; Tenbrinck, Daniel; Vidal-Núñez, José Fenchel duality theory and a primal-dual algorithm on Riemannian manifolds. (English) Zbl 07458819 Found. Comput. Math. 21, No. 6, 1465-1504 (2021). MSC: 47Axx 47Hxx 90C26 53C23 PDF BibTeX XML Cite \textit{R. Bergmann} et al., Found. Comput. Math. 21, No. 6, 1465--1504 (2021; Zbl 07458819) Full Text: DOI arXiv OpenURL
Liu, Xinwu Nonconvex total generalized variation model for image inpainting. (English) Zbl 1485.68276 Informatica, Vilnius 32, No. 2, 357-370 (2021). MSC: 68U10 65K10 94A08 PDF BibTeX XML Cite \textit{X. Liu}, Informatica, Vilnius 32, No. 2, 357--370 (2021; Zbl 1485.68276) Full Text: DOI OpenURL
Bastani, Mehdi; Salkuyeh, Davod Khojasteh On the GSOR iteration method for image restoration. (English) Zbl 1476.94008 Numer. Algebra Control Optim. 11, No. 1, 27-43 (2021). MSC: 94A08 65F10 PDF BibTeX XML Cite \textit{M. Bastani} and \textit{D. K. Salkuyeh}, Numer. Algebra Control Optim. 11, No. 1, 27--43 (2021; Zbl 1476.94008) Full Text: DOI OpenURL
Zhang, Yinghui; Deng, Xiaojuan; Zhao, Xing; Li, Hongwei A restricted linearised augmented Lagrangian method for Euler’s elastica model. (English) Zbl 1475.65116 East Asian J. Appl. Math. 11, No. 2, 276-300 (2021). MSC: 65M55 68U10 94A08 PDF BibTeX XML Cite \textit{Y. Zhang} et al., East Asian J. Appl. Math. 11, No. 2, 276--300 (2021; Zbl 1475.65116) Full Text: DOI arXiv OpenURL
Darbon, Jérôme; Langlois, Gabriel P. On Bayesian posterior mean estimators in imaging sciences and Hamilton-Jacobi partial differential equations. (English) Zbl 07433009 J. Math. Imaging Vis. 63, No. 7, 821-854 (2021). MSC: 68-XX 94-XX PDF BibTeX XML Cite \textit{J. Darbon} and \textit{G. P. Langlois}, J. Math. Imaging Vis. 63, No. 7, 821--854 (2021; Zbl 07433009) Full Text: DOI arXiv OpenURL
Pinetz, Thomas; Kobler, Erich; Pock, Thomas; Effland, Alexander Shared prior learning of energy-based models for image reconstruction. (English) Zbl 07430671 SIAM J. Imaging Sci. 14, No. 4, 1706-1748 (2021). MSC: 68U10 65C30 65K10 65L09 PDF BibTeX XML Cite \textit{T. Pinetz} et al., SIAM J. Imaging Sci. 14, No. 4, 1706--1748 (2021; Zbl 07430671) Full Text: DOI arXiv OpenURL
Houichet, Hamdi; Theljani, Anis; Moakher, Maher A nonlinear fourth-order PDE for image denoising in Sobolev spaces with variable exponents and its numerical algorithm. (English) Zbl 1476.35341 Comput. Appl. Math. 40, No. 3, Paper No. 70, 29 p. (2021). MSC: 35R35 49J40 60G40 PDF BibTeX XML Cite \textit{H. Houichet} et al., Comput. Appl. Math. 40, No. 3, Paper No. 70, 29 p. (2021; Zbl 1476.35341) Full Text: DOI OpenURL
Fan, Bin; Xu, Chuanju Identifying source term in the subdiffusion equation with \(L^2\)-TV regularization. (English) Zbl 07393232 Inverse Probl. 37, No. 10, Article ID 105008, 33 p. (2021). MSC: 65M32 65M30 65M60 65M06 65N30 65J20 65M12 65M15 60H50 35B65 35R30 26A33 35R11 PDF BibTeX XML Cite \textit{B. Fan} and \textit{C. Xu}, Inverse Probl. 37, No. 10, Article ID 105008, 33 p. (2021; Zbl 07393232) Full Text: DOI arXiv OpenURL
Zhu, Wei A first-order image restoration model that promotes image contrast preservation. (English) Zbl 1471.94006 J. Sci. Comput. 88, No. 2, Paper No. 46, 23 p. (2021). MSC: 94A08 68U10 65R32 PDF BibTeX XML Cite \textit{W. Zhu}, J. Sci. Comput. 88, No. 2, Paper No. 46, 23 p. (2021; Zbl 1471.94006) Full Text: DOI OpenURL
Cristoferi, Riccardo Exact solutions for the total variation denoising problem of piecewise constant images in dimension one. (English) Zbl 1475.49030 J. Appl. Anal. 27, No. 1, 13-33 (2021). Reviewer: Andreas Mang (Houston) MSC: 49K99 49K21 PDF BibTeX XML Cite \textit{R. Cristoferi}, J. Appl. Anal. 27, No. 1, 13--33 (2021; Zbl 1475.49030) Full Text: DOI OpenURL
Theljani, Anis Multi-scale non-standard fourth-order PDE in image denoising and its fixed point algorithm. (English) Zbl 1471.65126 Int. J. Numer. Anal. Model. 18, No. 1, 38-61 (2021). MSC: 65M32 47J25 65M50 65M22 94A08 35G30 35Q68 65J15 PDF BibTeX XML Cite \textit{A. Theljani}, Int. J. Numer. Anal. Model. 18, No. 1, 38--61 (2021; Zbl 1471.65126) Full Text: Link OpenURL
Li, Yan-Ran; Chan, Raymond H. F.; Shen, Lixin; Zhuang, Xiaosheng Regularization with multilevel non-stationary tight framelets for image restoration. (English) Zbl 1467.94005 Appl. Comput. Harmon. Anal. 53, 332-348 (2021). MSC: 94A08 42C15 68U10 PDF BibTeX XML Cite \textit{Y.-R. Li} et al., Appl. Comput. Harmon. Anal. 53, 332--348 (2021; Zbl 1467.94005) Full Text: DOI arXiv OpenURL
Deledalle, Charles-Alban; Papadakis, Nicolas; Salmon, Joseph; Vaiter, Samuel Block-based refitting in \(\ell_{12}\) sparse regularization. (English) Zbl 07358836 J. Math. Imaging Vis. 63, No. 2, 216-236 (2021). MSC: 68-XX 94-XX PDF BibTeX XML Cite \textit{C.-A. Deledalle} et al., J. Math. Imaging Vis. 63, No. 2, 216--236 (2021; Zbl 07358836) Full Text: DOI arXiv OpenURL
Jon, Kyongson; Liu, Jun; Wang, Xiaofei; Zhu, Wensheng; Xing, Yu Weighted hyper-Laplacian prior with overlapping group sparsity for image restoration under Cauchy noise. (English) Zbl 1466.62360 J. Sci. Comput. 87, No. 3, Paper No. 64, 32 p. (2021). MSC: 62H35 65D18 PDF BibTeX XML Cite \textit{K. Jon} et al., J. Sci. Comput. 87, No. 3, Paper No. 64, 32 p. (2021; Zbl 1466.62360) Full Text: DOI OpenURL
Mohaoui, Souad; Hakim, Abdelilah; Raghay, Said A combined dictionary learning and TV model for image restoration with convergence analysis. (English) Zbl 1488.94035 J. Math. Model. 9, No. 1, 13-30 (2021). MSC: 94A08 49J52 65K05 34A34 PDF BibTeX XML Cite \textit{S. Mohaoui} et al., J. Math. Model. 9, No. 1, 13--30 (2021; Zbl 1488.94035) Full Text: DOI OpenURL
Zhang, Jianjun; Nagy, James G. An effective alternating direction method of multipliers for color image restoration. (English) Zbl 1471.65016 Appl. Numer. Math. 164, 43-56 (2021). MSC: 65D18 65F22 65K10 94A08 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{J. G. Nagy}, Appl. Numer. Math. 164, 43--56 (2021; Zbl 1471.65016) Full Text: DOI OpenURL
Lv, Xiao-Guang; Li, Fang An iterative decoupled method with weighted nuclear norm minimization for image restoration. (English) Zbl 07475945 Int. J. Comput. Math. 97, No. 3, 602-623 (2020). MSC: 68U10 15A29 65K05 PDF BibTeX XML Cite \textit{X.-G. Lv} and \textit{F. Li}, Int. J. Comput. Math. 97, No. 3, 602--623 (2020; Zbl 07475945) Full Text: DOI OpenURL
Hakim, M.; Ghazdali, A.; Laghrib, A. A multi-frame super-resolution based on new variational data fidelity term. (English) Zbl 1481.94018 Appl. Math. Modelling 87, 446-467 (2020). MSC: 94A08 90C25 90C90 PDF BibTeX XML Cite \textit{M. Hakim} et al., Appl. Math. Modelling 87, 446--467 (2020; Zbl 1481.94018) Full Text: DOI OpenURL
Dong, Bin; Ju, Haocheng; Lu, Yiping; Shi, Zuoqiang CURE: curvature regularization for missing data recovery. (English) Zbl 1456.62127 SIAM J. Imaging Sci. 13, No. 4, 2169-2188 (2020). MSC: 62H35 62D10 65D18 68U10 58C40 58J50 PDF BibTeX XML Cite \textit{B. Dong} et al., SIAM J. Imaging Sci. 13, No. 4, 2169--2188 (2020; Zbl 1456.62127) Full Text: DOI arXiv OpenURL
Parisotto, Simone; Lellmann, Jan; Masnou, Simon; Schönlieb, Carola-Bibiane Higher-order total directional variation: imaging applications. (English) Zbl 07292249 SIAM J. Imaging Sci. 13, No. 4, 2063-2104 (2020). MSC: 47A52 49M30 49N45 65J22 94A08 PDF BibTeX XML Cite \textit{S. Parisotto} et al., SIAM J. Imaging Sci. 13, No. 4, 2063--2104 (2020; Zbl 07292249) Full Text: DOI arXiv OpenURL
Halim, Abdul; Kumar, B. V. Rathish A \(TV-L^2-H^{-1}\) PDE model for effective denoising. (English) Zbl 1452.35072 Comput. Math. Appl. 80, No. 10, 2176-2193 (2020). MSC: 35K15 35K59 65M12 68U10 94A08 PDF BibTeX XML Cite \textit{A. Halim} and \textit{B. V. R. Kumar}, Comput. Math. Appl. 80, No. 10, 2176--2193 (2020; Zbl 1452.35072) Full Text: DOI OpenURL
Fairag, Faisal; Al-Mahdi, Adel; Ahmad, Shahbaz Two-level method for the total fractional-order variation model in image deblurring problem. (English) Zbl 1451.94008 Numer. Algorithms 85, No. 3, 931-950 (2020). MSC: 94A08 65F08 65N55 PDF BibTeX XML Cite \textit{F. Fairag} et al., Numer. Algorithms 85, No. 3, 931--950 (2020; Zbl 1451.94008) Full Text: DOI OpenURL
Chan, Raymond H.; Kan, Kelvin K.; Nikolova, Mila; Plemmons, Robert J. A two-stage method for spectral-spatial classification of hyperspectral images. (English) Zbl 1483.68282 J. Math. Imaging Vis. 62, No. 6-7, 790-807 (2020). MSC: 68T05 62H30 68U10 94A08 PDF BibTeX XML Cite \textit{R. H. Chan} et al., J. Math. Imaging Vis. 62, No. 6--7, 790--807 (2020; Zbl 1483.68282) Full Text: DOI arXiv OpenURL
Okabe, Shinya; Pozzi, Paola; Wheeler, Glen A gradient flow for the \(p\)-elastic energy defined on closed planar curves. (English) Zbl 1454.35227 Math. Ann. 378, No. 1-2, 777-828 (2020). Reviewer: Peter Lindqvist (Trondheim) MSC: 35K92 53A04 53E10 PDF BibTeX XML Cite \textit{S. Okabe} et al., Math. Ann. 378, No. 1--2, 777--828 (2020; Zbl 1454.35227) Full Text: DOI arXiv OpenURL
Pang, Zhi-Feng; Meng, Ge; Li, Hui; Chen, Ke Image restoration via the adaptive \(TV^p\) regularization. (English) Zbl 1446.94012 Comput. Math. Appl. 80, No. 5, 569-587 (2020). MSC: 94A08 65K05 65R32 PDF BibTeX XML Cite \textit{Z.-F. Pang} et al., Comput. Math. Appl. 80, No. 5, 569--587 (2020; Zbl 1446.94012) Full Text: DOI OpenURL
Zhu, Wei Image denoising using \(L^p\)-norm of mean curvature of image surface. (English) Zbl 1457.94034 J. Sci. Comput. 83, No. 2, Paper No. 32, 26 p. (2020). MSC: 94A08 65K10 68U10 PDF BibTeX XML Cite \textit{W. Zhu}, J. Sci. Comput. 83, No. 2, Paper No. 32, 26 p. (2020; Zbl 1457.94034) Full Text: DOI OpenURL
Yao, Wenjuan; Shen, Jie; Guo, Zhichang; Sun, Jiebao; Wu, Boying A total fractional-order variation model for image super-resolution and its SAV algorithm. (English) Zbl 1439.65100 J. Sci. Comput. 82, No. 3, Paper No. 81, 18 p. (2020). MSC: 65M06 65T50 65D18 65K10 65J20 26A33 35R11 35R09 PDF BibTeX XML Cite \textit{W. Yao} et al., J. Sci. Comput. 82, No. 3, Paper No. 81, 18 p. (2020; Zbl 1439.65100) Full Text: DOI OpenURL
Parisotto, Simone; Masnou, Simon; Schönlieb, Carola-Bibiane Higher-order total directional variation: analysis. (English) Zbl 1444.47020 SIAM J. Imaging Sci. 13, No. 1, 474-496 (2020). Reviewer: Denis Sidorov (Irkutsk) MSC: 47A52 49N45 65J22 94A08 PDF BibTeX XML Cite \textit{S. Parisotto} et al., SIAM J. Imaging Sci. 13, No. 1, 474--496 (2020; Zbl 1444.47020) Full Text: DOI arXiv OpenURL
Wang, Weina; Wu, Chunlin; Tai, Xue-Cheng A globally convergent algorithm for a constrained non-Lipschitz image restoration model. (English) Zbl 1455.94037 J. Sci. Comput. 83, No. 1, Paper No. 14, 29 p. (2020). MSC: 94A08 90C26 94A12 PDF BibTeX XML Cite \textit{W. Wang} et al., J. Sci. Comput. 83, No. 1, Paper No. 14, 29 p. (2020; Zbl 1455.94037) Full Text: DOI OpenURL
Chowdhury, Mujibur Rahman; Zhang, Jun; Qin, Jing; Lou, Yifei Poisson image denoising based on fractional-order total variation. (English) Zbl 1455.94013 Inverse Probl. Imaging 14, No. 1, 77-96 (2020). MSC: 94A08 65F22 26A33 49J10 49M25 49N45 PDF BibTeX XML Cite \textit{M. R. Chowdhury} et al., Inverse Probl. Imaging 14, No. 1, 77--96 (2020; Zbl 1455.94013) Full Text: DOI OpenURL
Afraites, L.; Hadri, A.; Laghrib, A. A denoising model adapted for impulse and Gaussian noises using a constrained-PDE. (English) Zbl 07161822 Inverse Probl. 36, No. 2, Article ID 025006, 40 p. (2020). MSC: 49Qxx 94Axx 58Exx PDF BibTeX XML Cite \textit{L. Afraites} et al., Inverse Probl. 36, No. 2, Article ID 025006, 40 p. (2020; Zbl 07161822) Full Text: DOI OpenURL
Yang, Jing-Hua; Zhao, Xi-Le; Ma, Tian-Hui; Chen, Yong; Huang, Ting-Zhu; Ding, Meng Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. (English) Zbl 1429.94027 J. Comput. Appl. Math. 363, 124-144 (2020). MSC: 94A08 90C26 90C90 PDF BibTeX XML Cite \textit{J.-H. Yang} et al., J. Comput. Appl. Math. 363, 124--144 (2020; Zbl 1429.94027) Full Text: DOI OpenURL
Laghrib, Amine; Hadri, Aissam; Hakim, Abdelilah; Raghay, Said A new multiframe super-resolution based on nonlinear registration and a spatially weighted regularization. (English) Zbl 1451.94010 Inf. Sci. 493, 34-56 (2019). MSC: 94A08 PDF BibTeX XML Cite \textit{A. Laghrib} et al., Inf. Sci. 493, 34--56 (2019; Zbl 1451.94010) Full Text: DOI OpenURL
Zhang, Jianjun A relaxed Newton-Picard like method for Huber variant of total variation based image restoration. (English) Zbl 1442.65022 Comput. Math. Appl. 78, No. 1, 224-239 (2019). MSC: 65D18 94A08 PDF BibTeX XML Cite \textit{J. Zhang}, Comput. Math. Appl. 78, No. 1, 224--239 (2019; Zbl 1442.65022) Full Text: DOI OpenURL
Bai, Lufeng A new nonconvex approach for image restoration with Gamma noise. (English) Zbl 1442.94003 Comput. Math. Appl. 77, No. 10, 2627-2639 (2019). MSC: 94A08 65K05 90C26 90C48 90C90 PDF BibTeX XML Cite \textit{L. Bai}, Comput. Math. Appl. 77, No. 10, 2627--2639 (2019; Zbl 1442.94003) Full Text: DOI OpenURL
Zhu, Wei A first-order image denoising model for staircase reduction. (English) Zbl 1434.94018 Adv. Comput. Math. 45, No. 5-6, 3217-3239 (2019). MSC: 94A08 65K10 65M32 PDF BibTeX XML Cite \textit{W. Zhu}, Adv. Comput. Math. 45, No. 5--6, 3217--3239 (2019; Zbl 1434.94018) Full Text: DOI OpenURL
Zhang, Jun; Ma, Mingxi; Wu, Zhaoming; Deng, Chengzhi High-order total bounded variation model and its fast algorithm for Poissonian image restoration. (English) Zbl 1435.94053 Math. Probl. Eng. 2019, Article ID 2502731, 11 p. (2019). MSC: 94A08 68U10 65K05 94A12 PDF BibTeX XML Cite \textit{J. Zhang} et al., Math. Probl. Eng. 2019, Article ID 2502731, 11 p. (2019; Zbl 1435.94053) Full Text: DOI OpenURL
Kongskov, Rasmus Dalgas; Dong, Yiqiu; Knudsen, Kim Directional total generalized variation regularization. (English) Zbl 1429.49035 BIT 59, No. 4, 903-928 (2019). MSC: 49M29 65K10 65J22 90C47 94A08 PDF BibTeX XML Cite \textit{R. D. Kongskov} et al., BIT 59, No. 4, 903--928 (2019; Zbl 1429.49035) Full Text: DOI arXiv OpenURL
Ding, Meng; Huang, Ting-Zhu; Wang, Si; Mei, Jin-Jin; Zhao, Xi-Le Total variation with overlapping group sparsity for deblurring images under Cauchy noise. (English) Zbl 1428.94021 Appl. Math. Comput. 341, 128-147 (2019). MSC: 94A08 68U10 PDF BibTeX XML Cite \textit{M. Ding} et al., Appl. Math. Comput. 341, 128--147 (2019; Zbl 1428.94021) Full Text: DOI OpenURL
Shan, Xiujie; Sun, Jiebao; Guo, Zhichang Multiplicative noise removal based on the smooth diffusion equation. (English) Zbl 1446.94013 J. Math. Imaging Vis. 61, No. 6, 763-779 (2019). MSC: 94A08 35K20 35K59 PDF BibTeX XML Cite \textit{X. Shan} et al., J. Math. Imaging Vis. 61, No. 6, 763--779 (2019; Zbl 1446.94013) Full Text: DOI OpenURL
Gelb, Anne; Scarnati, Theresa Reducing effects of bad data using variance based joint sparsity recovery. (English) Zbl 1410.65120 J. Sci. Comput. 78, No. 1, 94-120 (2019). MSC: 65F22 65K10 68U10 PDF BibTeX XML Cite \textit{A. Gelb} and \textit{T. Scarnati}, J. Sci. Comput. 78, No. 1, 94--120 (2019; Zbl 1410.65120) Full Text: DOI OpenURL
Na, Hanwool; Kang, Myeongmin; Jung, Miyoun; Kang, Myungjoo Nonconvex TGV regularization model for multiplicative noise removal with spatially varying parameters. (English) Zbl 1491.94009 Inverse Probl. Imaging 13, No. 1, 117-147 (2019). MSC: 94A08 68U10 65K10 PDF BibTeX XML Cite \textit{H. Na} et al., Inverse Probl. Imaging 13, No. 1, 117--147 (2019; Zbl 1491.94009) Full Text: DOI OpenURL
Zhu, Jianguang; Li, Kai; Hao, Binbin Hybrid variational model based on alternating direction method for image restoration. (English) Zbl 1458.94068 Adv. Difference Equ. 2019, Paper No. 34, 16 p. (2019). MSC: 94A08 68U10 65K10 90C30 65T50 PDF BibTeX XML Cite \textit{J. Zhu} et al., Adv. Difference Equ. 2019, Paper No. 34, 16 p. (2019; Zbl 1458.94068) Full Text: DOI OpenURL
Adam, Tarmizi; Paramesran, Raveendran Image denoising using combined higher order non-convex total variation with overlapping group sparsity. (English) Zbl 1429.94009 Multidimensional Syst. Signal Process. 30, No. 1, 503-527 (2019). MSC: 94A08 90C26 90C90 PDF BibTeX XML Cite \textit{T. Adam} and \textit{R. Paramesran}, Multidimensional Syst. Signal Process. 30, No. 1, 503--527 (2019; Zbl 1429.94009) Full Text: DOI OpenURL
Liu, Zheng; Lai, Rongjie; Zhang, Huayan; Wu, Chunlin Triangulated surface denoising using high order regularization with dynamic weights. (English) Zbl 1405.65024 SIAM J. Sci. Comput. 41, No. 1, B1-B26 (2019). MSC: 65D18 65K10 68U10 94A08 PDF BibTeX XML Cite \textit{Z. Liu} et al., SIAM J. Sci. Comput. 41, No. 1, B1--B26 (2019; Zbl 1405.65024) Full Text: DOI arXiv OpenURL
Brito-Loeza, Carlos; Legarda-Sáenz, Ricardo; Espinosa-Romero, Arturo; Martin-Gonzalez, Anabel A mean curvature regularized based model for demodulating phase maps from fringe patterns. (English) Zbl 1488.35516 Commun. Comput. Phys. 24, No. 1, 27-43 (2018). MSC: 35Q60 35A15 65K10 78M30 PDF BibTeX XML Cite \textit{C. Brito-Loeza} et al., Commun. Comput. Phys. 24, No. 1, 27--43 (2018; Zbl 1488.35516) Full Text: DOI OpenURL
Kumar, Ahlad; Ahmad, M. Omair; Swamy, M. N. S. An efficient denoising framework using weighted overlapping group sparsity. (English) Zbl 1440.94014 Inf. Sci. 454-455, 292-311 (2018). MSC: 94A12 94A08 PDF BibTeX XML Cite \textit{A. Kumar} et al., Inf. Sci. 454--455, 292--311 (2018; Zbl 1440.94014) Full Text: DOI OpenURL
Gao, Yiming; Liu, Fang; Yang, Xiaoping Total generalized variation restoration with non-quadratic fidelity. (English) Zbl 1448.94013 Multidimensional Syst. Signal Process. 29, No. 4, 1459-1484 (2018). MSC: 94A08 PDF BibTeX XML Cite \textit{Y. Gao} et al., Multidimensional Syst. Signal Process. 29, No. 4, 1459--1484 (2018; Zbl 1448.94013) Full Text: DOI OpenURL
Tan, Lu; Liu, Wanquan; Pan, Zhenkuan Color image restoration and inpainting via multi-channel total curvature. (English) Zbl 1460.94014 Appl. Math. Modelling 61, 280-299 (2018). MSC: 94A08 94A40 65T50 42A38 PDF BibTeX XML Cite \textit{L. Tan} et al., Appl. Math. Modelling 61, 280--299 (2018; Zbl 1460.94014) Full Text: DOI OpenURL
Siddig, Abdelgader; Guo, Zhichang; Zhou, Zhenyu; Wu, Boying An image denoising model based on a fourth-order nonlinear partial differential equation. (English) Zbl 1435.94047 Comput. Math. Appl. 76, No. 5, 1056-1074 (2018). MSC: 94A08 35K35 35K59 PDF BibTeX XML Cite \textit{A. Siddig} et al., Comput. Math. Appl. 76, No. 5, 1056--1074 (2018; Zbl 1435.94047) Full Text: DOI OpenURL
Thai, Duy Hoang; Mentch, Lucas Multiphase segmentation for simultaneously homogeneous and textural images. (English) Zbl 1427.94027 Appl. Math. Comput. 335, 146-181 (2018). MSC: 94A08 68U10 68T10 PDF BibTeX XML Cite \textit{D. H. Thai} and \textit{L. Mentch}, Appl. Math. Comput. 335, 146--181 (2018; Zbl 1427.94027) Full Text: DOI arXiv OpenURL
Zhu, Jianguang; Li, Kai; Hao, Binbin Image restoration by a mixed high-order total variation and \(l_1\) regularization model. (English) Zbl 1427.94036 Math. Probl. Eng. 2018, Article ID 6538610, 13 p. (2018). MSC: 94A08 65R32 68U10 PDF BibTeX XML Cite \textit{J. Zhu} et al., Math. Probl. Eng. 2018, Article ID 6538610, 13 p. (2018; Zbl 1427.94036) Full Text: DOI OpenURL
Zhu, Bin; Tian, Lianfang; Du, Qiliang; Wu, Qiuxia; Shi, Lixin An improved fractional-order optical flow model for motion estimation. (English) Zbl 1427.94035 Math. Probl. Eng. 2018, Article ID 6278719, 6 p. (2018). MSC: 94A08 68U10 26A33 PDF BibTeX XML Cite \textit{B. Zhu} et al., Math. Probl. Eng. 2018, Article ID 6278719, 6 p. (2018; Zbl 1427.94035) Full Text: DOI OpenURL
Gao, Yiming; Yang, Xiaoping TGV-based multiplicative noise removal approach: models and algorithms. (English) Zbl 1490.94014 J. Inverse Ill-Posed Probl. 26, No. 6, 703-727 (2018). MSC: 94A08 65K10 49M37 68W25 68U10 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{X. Yang}, J. Inverse Ill-Posed Probl. 26, No. 6, 703--727 (2018; Zbl 1490.94014) Full Text: DOI OpenURL
Bai, Jian; Feng, Xiang-Chu Image denoising using generalized anisotropic diffusion. (English) Zbl 1437.94004 J. Math. Imaging Vis. 60, No. 7, 994-1007 (2018). MSC: 94A08 PDF BibTeX XML Cite \textit{J. Bai} and \textit{X.-C. Feng}, J. Math. Imaging Vis. 60, No. 7, 994--1007 (2018; Zbl 1437.94004) Full Text: DOI OpenURL
Ma, Tian-Hui; Huang, Ting-Zhu; Zhao, Xi-Le Spatially dependent regularization parameter selection for total generalized variation-based image denoising. (English) Zbl 1423.94009 Comput. Appl. Math. 37, No. 1, 277-296 (2018). MSC: 94A08 90C26 68U10 90C90 PDF BibTeX XML Cite \textit{T.-H. Ma} et al., Comput. Appl. Math. 37, No. 1, 277--296 (2018; Zbl 1423.94009) Full Text: DOI OpenURL
Jeong, Taeuk; Jung, Yoon Mo; Yun, Sangwoon Iterative reweighted algorithm for non-convex Poissonian image restoration model. (English) Zbl 1391.90491 J. Korean Math. Soc. 55, No. 3, 719-734 (2018). MSC: 90C26 49M37 PDF BibTeX XML Cite \textit{T. Jeong} et al., J. Korean Math. Soc. 55, No. 3, 719--734 (2018; Zbl 1391.90491) Full Text: Link OpenURL
Sanders, Toby Parameter selection for HOTV regularization. (English) Zbl 1379.65032 Appl. Numer. Math. 125, 1-9 (2018). MSC: 65J20 47A52 65J22 65J10 65D18 PDF BibTeX XML Cite \textit{T. Sanders}, Appl. Numer. Math. 125, 1--9 (2018; Zbl 1379.65032) Full Text: DOI arXiv OpenURL
Sanders, Toby; Gelb, Anne; Platte, Rodrigo B. Composite SAR imaging using sequential joint sparsity. (English) Zbl 1415.65050 J. Comput. Phys. 338, 357-370 (2017). MSC: 65D18 68U10 PDF BibTeX XML Cite \textit{T. Sanders} et al., J. Comput. Phys. 338, 357--370 (2017; Zbl 1415.65050) Full Text: DOI OpenURL
Gong, Maoguo; Jiang, Xiangming; Li, Hao Optimization methods for regularization-based ill-posed problems: a survey and a multi-objective framework. (English) Zbl 1405.94024 Front. Comput. Sci. 11, No. 3, 362-391 (2017). MSC: 94A12 90C29 90C59 PDF BibTeX XML Cite \textit{M. Gong} et al., Front. Comput. Sci. 11, No. 3, 362--391 (2017; Zbl 1405.94024) Full Text: DOI OpenURL
Wang, Min; Huang, Ting-Zhu; Zhao, Xi-Le; Deng, Liang-Jian; Liu, Gang A unidirectional total variation and second-order total variation model for destriping of remote sensing images. (English) Zbl 1426.94027 Math. Probl. Eng. 2017, Article ID 4397189, 10 p. (2017). MSC: 94A08 68U10 65K05 PDF BibTeX XML Cite \textit{M. Wang} et al., Math. Probl. Eng. 2017, Article ID 4397189, 10 p. (2017; Zbl 1426.94027) Full Text: DOI OpenURL
Guo, Weihong; Song, Guohui; Zhang, Yue PCM-TV-TFV: a novel two-stage framework for image reconstruction from Fourier data. (English) Zbl 1401.35316 SIAM J. Imaging Sci. 10, No. 4, 2250-2274 (2017). MSC: 35R11 65K10 65F22 90C25 PDF BibTeX XML Cite \textit{W. Guo} et al., SIAM J. Imaging Sci. 10, No. 4, 2250--2274 (2017; Zbl 1401.35316) Full Text: DOI arXiv OpenURL
Abergel, Rémy; Moisan, Lionel The Shannon total variation. (English) Zbl 1382.94005 J. Math. Imaging Vis. 59, No. 2, 341-370 (2017). MSC: 94A08 68U10 94A17 PDF BibTeX XML Cite \textit{R. Abergel} and \textit{L. Moisan}, J. Math. Imaging Vis. 59, No. 2, 341--370 (2017; Zbl 1382.94005) Full Text: DOI OpenURL
De los Reyes, J. C.; Schönlieb, C.-B.; Valkonen, T. Bilevel parameter learning for higher-order total variation regularisation models. (English) Zbl 1425.94010 J. Math. Imaging Vis. 57, No. 1, 1-25 (2017). MSC: 94A08 68U10 PDF BibTeX XML Cite \textit{J. C. De los Reyes} et al., J. Math. Imaging Vis. 57, No. 1, 1--25 (2017; Zbl 1425.94010) Full Text: DOI arXiv OpenURL
Zhang, Xiaole; Shi, Yuying; Pang, Zhi-Feng; Zhu, Yonggui Fast algorithm for image denoising with different boundary conditions. (English) Zbl 1380.94041 J. Franklin Inst. 354, No. 11, 4595-4614 (2017). MSC: 94A08 68U10 65T50 PDF BibTeX XML Cite \textit{X. Zhang} et al., J. Franklin Inst. 354, No. 11, 4595--4614 (2017; Zbl 1380.94041) Full Text: DOI OpenURL
Jia, Zhi-Gang; Wei, Musheng A new TV-Stokes model for image deblurring and denoising with fast algorithms. (English) Zbl 06805216 J. Sci. Comput. 72, No. 2, 522-541 (2017). MSC: 65-XX PDF BibTeX XML Cite \textit{Z.-G. Jia} and \textit{M. Wei}, J. Sci. Comput. 72, No. 2, 522--541 (2017; Zbl 06805216) Full Text: DOI OpenURL
Ferreira, Rita; Fonseca, Irene; Mascarenhas, M. Luísa A chromaticity-brightness model for color images denoising in a Meyer’s “\(u + v\)” framework. (English) Zbl 1379.49011 Calc. Var. Partial Differ. Equ. 56, No. 5, Paper No. 140, 53 p. (2017). Reviewer: Guy Jumarie (Montréal) MSC: 49J45 26B30 94A08 PDF BibTeX XML Cite \textit{R. Ferreira} et al., Calc. Var. Partial Differ. Equ. 56, No. 5, Paper No. 140, 53 p. (2017; Zbl 1379.49011) Full Text: DOI arXiv OpenURL
Müller, J.-S. A coupled variational problem of linear growth related to the denoising and inpainting of images. (English. Russian original) Zbl 1375.49050 J. Math. Sci., New York 224, No. 5, 709-734 (2017); translation from Probl. Mat. Anal. 88, 97-117 (2017). MSC: 49N60 35B65 49N15 PDF BibTeX XML Cite \textit{J. S. Müller}, J. Math. Sci., New York 224, No. 5, 709--734 (2017; Zbl 1375.49050); translation from Probl. Mat. Anal. 88, 97--117 (2017) Full Text: DOI arXiv OpenURL
Acerbi, Emilio; Mucci, Domenico Curvature-dependent energies. (English) Zbl 1375.49013 Milan J. Math. 85, No. 1, 41-69 (2017). MSC: 49J45 49Q15 26A45 65K10 PDF BibTeX XML Cite \textit{E. Acerbi} and \textit{D. Mucci}, Milan J. Math. 85, No. 1, 41--69 (2017; Zbl 1375.49013) Full Text: DOI OpenURL
Tang, Jinping; Han, Bo; Han, Weimin; Bi, Bo; Li, Li Mixed total variation and \(L^1\) regularization method for optical tomography based on radiative transfer equation. (English) Zbl 1369.92065 Comput. Math. Methods Med. 2017, Article ID 2953560, 15 p. (2017). MSC: 92C55 PDF BibTeX XML Cite \textit{J. Tang} et al., Comput. Math. Methods Med. 2017, Article ID 2953560, 15 p. (2017; Zbl 1369.92065) Full Text: DOI OpenURL
Kang, Myeongmin; Kang, Myungjoo; Jung, Miyoun Total generalized variation based denoising models for ultrasound images. (English) Zbl 1372.65059 J. Sci. Comput. 72, No. 1, 172-197 (2017). Reviewer: Manfred Tasche (Rostock) MSC: 65D18 94A08 65K05 90C25 90C26 PDF BibTeX XML Cite \textit{M. Kang} et al., J. Sci. Comput. 72, No. 1, 172--197 (2017; Zbl 1372.65059) Full Text: DOI OpenURL
Jung, Yoon Mo; Jeong, Taeuk; Yun, Sangwoon Non-convex TV denoising corrupted by impulse noise. (English) Zbl 1420.94013 Inverse Probl. Imaging 11, No. 4, 689-702 (2017). MSC: 94A08 PDF BibTeX XML Cite \textit{Y. M. Jung} et al., Inverse Probl. Imaging 11, No. 4, 689--702 (2017; Zbl 1420.94013) Full Text: DOI OpenURL
Liu, Yuan; Song, Yanzhi; Yang, Zhouwang; Deng, Jiansong Implicit surface reconstruction with total variation regularization. (English) Zbl 1366.65030 Comput. Aided Geom. Des. 52-53, 135-153 (2017). MSC: 65D17 PDF BibTeX XML Cite \textit{Y. Liu} et al., Comput. Aided Geom. Des. 52--53, 135--153 (2017; Zbl 1366.65030) Full Text: DOI OpenURL
Valkonen, T. The jump set under geometric regularisation. II: Higher-order approaches. (English) Zbl 1373.49055 J. Math. Anal. Appl. 453, No. 2, 1044-1085 (2017). Reviewer: Sorin-Mihai Grad (Chemnitz) MSC: 49Q20 47A52 26A45 PDF BibTeX XML Cite \textit{T. Valkonen}, J. Math. Anal. Appl. 453, No. 2, 1044--1085 (2017; Zbl 1373.49055) Full Text: DOI arXiv OpenURL
Yamagishi, Masao; Yamada, Isao Nonexpansiveness of a linearized augmented Lagrangian operator for hierarchical convex optimization. (English) Zbl 1453.65138 Inverse Probl. 33, No. 4, Article ID 044003, 35 p. (2017). MSC: 65K05 90C25 91A65 PDF BibTeX XML Cite \textit{M. Yamagishi} and \textit{I. Yamada}, Inverse Probl. 33, No. 4, Article ID 044003, 35 p. (2017; Zbl 1453.65138) Full Text: DOI OpenURL
Chambolle, Antonin; Duval, Vincent; Peyré, Gabriel; Poon, Clarice Geometric properties of solutions to the total variation denoising problem. (English) Zbl 1369.94020 Inverse Probl. 33, No. 1, Article ID 015002, 44 p. (2017). MSC: 94A08 49N60 65K10 PDF BibTeX XML Cite \textit{A. Chambolle} et al., Inverse Probl. 33, No. 1, Article ID 015002, 44 p. (2017; Zbl 1369.94020) Full Text: DOI arXiv OpenURL
Acerbi, Emilio; Mucci, Domenico Curvature-dependent energies: the elastic case. (English) Zbl 1361.53007 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 153, 7-34 (2017). Reviewer: Vasile Oproiu (Iaşi) MSC: 53A07 53C43 74B99 49Q10 PDF BibTeX XML Cite \textit{E. Acerbi} and \textit{D. Mucci}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 153, 7--34 (2017; Zbl 1361.53007) Full Text: DOI OpenURL
Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad A new variational approach for restoring images with multiplicative noise. (English) Zbl 1443.94032 Comput. Math. Appl. 71, No. 10, 2034-2050 (2016). MSC: 94A08 65K10 PDF BibTeX XML Cite \textit{A. Ullah} et al., Comput. Math. Appl. 71, No. 10, 2034--2050 (2016; Zbl 1443.94032) Full Text: DOI OpenURL
Liu, Xinwu Augmented Lagrangian method for total generalized variation based Poissonian image restoration. (English) Zbl 1443.94024 Comput. Math. Appl. 71, No. 8, 1694-1705 (2016). MSC: 94A08 PDF BibTeX XML Cite \textit{X. Liu}, Comput. Math. Appl. 71, No. 8, 1694--1705 (2016; Zbl 1443.94024) Full Text: DOI OpenURL
Lv, Xiao-Guang; Jiang, Le; Liu, Jun Deblurring Poisson noisy images by total variation with overlapping group sparsity. (English) Zbl 1410.94015 Appl. Math. Comput. 289, 132-148 (2016). MSC: 94A08 68U10 PDF BibTeX XML Cite \textit{X.-G. Lv} et al., Appl. Math. Comput. 289, 132--148 (2016; Zbl 1410.94015) Full Text: DOI OpenURL
Jung, Miyoun; Kang, Myungjoo Variational image colorization models using higher-order Mumford-Shah regularizers. (English) Zbl 1371.65020 J. Sci. Comput. 68, No. 2, 864-888 (2016). MSC: 65D18 PDF BibTeX XML Cite \textit{M. Jung} and \textit{M. Kang}, J. Sci. Comput. 68, No. 2, 864--888 (2016; Zbl 1371.65020) Full Text: DOI OpenURL