Iguchi, Tatsuo The water wave equation. (English. Japanese original) Zbl 1498.35422 Sugaku Expo. 35, No. 1, 53-81 (2022); translation from Sūgaku 70, No. 1, 1-25 (2018). MSC: 35Q35 35Q31 76B15 35R35 35-02 PDF BibTeX XML Cite \textit{T. Iguchi}, Sugaku Expo. 35, No. 1, 53--81 (2022; Zbl 1498.35422); translation from Sūgaku 70, No. 1, 1--25 (2018) Full Text: DOI OpenURL
Li, Changyan; Li, Hui Well-posedness of the free boundary problem in incompressible MHD with surface tension. (English) Zbl 1495.35148 Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 191, 51 p. (2022). MSC: 35Q35 76W05 76T06 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{C. Li} and \textit{H. Li}, Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 191, 51 p. (2022; Zbl 1495.35148) Full Text: DOI arXiv OpenURL
Gu, Xumin; Lei, Zhen Local well-posedness of free-boundary incompressible elastodynamics with surface tension via vanishing viscosity limit. (English) Zbl 07571554 Arch. Ration. Mech. Anal. 245, No. 3, 1285-1338 (2022). MSC: 35Q31 35Q35 76B45 76A10 74B20 74A20 35B45 35A01 35A02 35R35 PDF BibTeX XML Cite \textit{X. Gu} and \textit{Z. Lei}, Arch. Ration. Mech. Anal. 245, No. 3, 1285--1338 (2022; Zbl 07571554) Full Text: DOI OpenURL
Luo, Chenyun; Zhang, Junyan Local well-posedness for the motion of a compressible gravity water wave with vorticity. (English) Zbl 07547903 J. Differ. Equations 332, 333-403 (2022). MSC: 35Q31 76B15 76B47 76N10 76B03 35B45 35A01 35A02 35R37 PDF BibTeX XML Cite \textit{C. Luo} and \textit{J. Zhang}, J. Differ. Equations 332, 333--403 (2022; Zbl 07547903) Full Text: DOI arXiv OpenURL
Alazard, Thomas; Ifrim, Mihaela; Tataru, Daniel A Morawetz inequality for water waves. (English) Zbl 1497.35071 Am. J. Math. 144, No. 3, 607-699 (2022). Reviewer: Chengbo Wang (Hangzhou) MSC: 35B45 76B15 35B65 35B40 PDF BibTeX XML Cite \textit{T. Alazard} et al., Am. J. Math. 144, No. 3, 607--699 (2022; Zbl 1497.35071) Full Text: arXiv Link OpenURL
Zhang, Junyan Local well-posedness and incompressible limit of the free-boundary problem in compressible elastodynamics. (English) Zbl 1490.35292 Arch. Ration. Mech. Anal. 244, No. 3, 599-697 (2022). MSC: 35Q31 76N10 74F10 74B10 35A01 35A02 35R35 PDF BibTeX XML Cite \textit{J. Zhang}, Arch. Ration. Mech. Anal. 244, No. 3, 599--697 (2022; Zbl 1490.35292) Full Text: DOI arXiv OpenURL
Hao, Chengchun; Luo, Tao Some results on free boundary problems of incompressible ideal magnetohydrodynamics equations. (English) Zbl 1490.35319 Electron Res. Arch. 30, No. 2, 404-424 (2022). MSC: 35Q35 76W05 76B03 35R25 35R35 35A01 35A02 PDF BibTeX XML Cite \textit{C. Hao} and \textit{T. Luo}, Electron Res. Arch. 30, No. 2, 404--424 (2022; Zbl 1490.35319) Full Text: DOI OpenURL
Granero-Belinchón, Rafael Nonlinear waves in incompressible fluids. (Ondas no lineales en fluidos incompresibles.) (Spanish) Zbl 1490.76036 Gac. R. Soc. Mat. Esp. 24, No. 3, 507-531 (2021). MSC: 76B15 76B20 PDF BibTeX XML Cite \textit{R. Granero-Belinchón}, Gac. R. Soc. Mat. Esp. 24, No. 3, 507--531 (2021; Zbl 1490.76036) Full Text: Link OpenURL
Li, Changyan; Li, Hui Well-posedness of the two-phase flow problem in incompressible MHD. (English) Zbl 1482.35175 Discrete Contin. Dyn. Syst. 41, No. 12, 5609-5632 (2021). MSC: 35Q35 76W05 76T06 35B35 35A01 35A02 35R35 PDF BibTeX XML Cite \textit{C. Li} and \textit{H. Li}, Discrete Contin. Dyn. Syst. 41, No. 12, 5609--5632 (2021; Zbl 1482.35175) Full Text: DOI OpenURL
Wang, Yanjin; Xin, Zhouping Global well-posedness of free interface problems for the incompressible inviscid resistive MHD. (English) Zbl 1477.35182 Commun. Math. Phys. 388, No. 3, 1323-1401 (2021). MSC: 35Q35 35Q60 76W05 76X05 35A01 35A02 35R35 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{Z. Xin}, Commun. Math. Phys. 388, No. 3, 1323--1401 (2021; Zbl 1477.35182) Full Text: DOI arXiv OpenURL
Westernacher-Schneider, John Ryan Extremely high-order convergence in simulations of relativistic stars. (English) Zbl 1482.85009 Classical Quantum Gravity 38, No. 14, Article ID 145003, 25 p. (2021). MSC: 85A15 41A25 85A20 70F05 83C35 74J15 PDF BibTeX XML Cite \textit{J. R. Westernacher-Schneider}, Classical Quantum Gravity 38, No. 14, Article ID 145003, 25 p. (2021; Zbl 1482.85009) Full Text: DOI arXiv OpenURL
Li, Hui; Wang, Wei; Zhang, Zhifei Well-posedness of the free boundary problem in elastodynamics with mixed stability condition. (English) Zbl 1475.35424 SIAM J. Math. Anal. 53, No. 5, 5405-5435 (2021). Reviewer: Adrian Muntean (Karlstad) MSC: 35R35 35Q35 76B03 PDF BibTeX XML Cite \textit{H. Li} et al., SIAM J. Math. Anal. 53, No. 5, 5405--5435 (2021; Zbl 1475.35424) Full Text: DOI arXiv OpenURL
Wang, Chao; Zhang, Zhifei; Zhao, Weiren; Zheng, Yunrui Local well-posedness and break-down criterion of the incompressible Euler equations with free boundary. (English) Zbl 1486.35354 Memoirs of the American Mathematical Society 1318. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4689-5/pbk, 978-1-4704-6524-7/ebook). v, 119 p. (2021). Reviewer: Ming Mei (Montreal) MSC: 35Q35 76B15 35Q31 76B03 35Q05 35-02 35R35 35B65 PDF BibTeX XML Cite \textit{C. Wang} et al., Local well-posedness and break-down criterion of the incompressible Euler equations with free boundary. Providence, RI: American Mathematical Society (AMS) (2021; Zbl 1486.35354) Full Text: DOI arXiv OpenURL
Craig, Walter; Guyenne, Philippe; Sulem, Catherine The water wave problem and Hamiltonian transformation theory. (English) Zbl 1479.76013 Bodnár, Tomáš (ed.) et al., Waves in flows. Based on lectures given at the summer school, Prague, Czech Republic, August 27–31, 2018. Cham: Birkhäuser. Adv. Math. Fluid Mech., 113-196 (2021). MSC: 76B15 76B25 76M45 70H05 35Q35 35Q53 PDF BibTeX XML Cite \textit{W. Craig} et al., in: Waves in flows. Based on lectures given at the summer school, Prague, Czech Republic, August 27--31, 2018. Cham: Birkhäuser. 113--196 (2021; Zbl 1479.76013) Full Text: DOI OpenURL
Hao, Chengchun; Luo, Tao Well-posedness for the linearized free boundary problem of incompressible ideal magnetohydrodynamics equations. (English) Zbl 1476.35197 J. Differ. Equations 299, 542-601 (2021). MSC: 35Q35 35R35 PDF BibTeX XML Cite \textit{C. Hao} and \textit{T. Luo}, J. Differ. Equations 299, 542--601 (2021; Zbl 1476.35197) Full Text: DOI arXiv OpenURL
Ginsberg, Daniel On the breakdown of solutions to the incompressible Euler equations with free surface boundary. (English) Zbl 1473.35667 SIAM J. Math. Anal. 53, No. 3, 3366-3384 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35R35 76B03 35B45 35Q31 PDF BibTeX XML Cite \textit{D. Ginsberg}, SIAM J. Math. Anal. 53, No. 3, 3366--3384 (2021; Zbl 1473.35667) Full Text: DOI arXiv OpenURL
Luo, Chenyun; Zhang, Junyan A priori estimates for the incompressible free-boundary magnetohydrodynamics equations with surface tension. (English) Zbl 1468.35143 SIAM J. Math. Anal. 53, No. 2, 2595-2630 (2021). MSC: 35Q35 35L60 76B03 76B45 76W05 35R35 PDF BibTeX XML Cite \textit{C. Luo} and \textit{J. Zhang}, SIAM J. Math. Anal. 53, No. 2, 2595--2630 (2021; Zbl 1468.35143) Full Text: DOI arXiv OpenURL
Wang, Zhan; Yang, Jiaqi Well-posedness of electrohydrodynamic interfacial waves under tangential electric field. (English) Zbl 1464.35259 SIAM J. Math. Anal. 53, No. 2, 2567-2594 (2021). MSC: 35Q35 76W05 76T06 76D45 35A01 35A02 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{J. Yang}, SIAM J. Math. Anal. 53, No. 2, 2567--2594 (2021; Zbl 1464.35259) Full Text: DOI OpenURL
Luo, Tao; Zeng, Huihui On the free surface motion of highly subsonic heat-conducting inviscid flows. (English) Zbl 1464.76047 Arch. Ration. Mech. Anal. 240, No. 2, 877-926 (2021). MSC: 76G25 76N10 35Q31 35R35 80A19 PDF BibTeX XML Cite \textit{T. Luo} and \textit{H. Zeng}, Arch. Ration. Mech. Anal. 240, No. 2, 877--926 (2021; Zbl 1464.76047) Full Text: DOI arXiv OpenURL
Agrawal, Siddhant Angled crested like water waves with surface tension: wellposedness of the problem. (English) Zbl 1467.35246 Commun. Math. Phys. 383, No. 3, 1409-1526 (2021). MSC: 35Q31 76B15 76B03 35A21 35L05 PDF BibTeX XML Cite \textit{S. Agrawal}, Commun. Math. Phys. 383, No. 3, 1409--1526 (2021; Zbl 1467.35246) Full Text: DOI arXiv OpenURL
Yang, Jiaqi A priori estimates of the electrohydrodynamic waves with vorticity: vertical electric field. (English) Zbl 1464.76216 J. Math. Anal. Appl. 498, No. 2, Article ID 124973, 17 p. (2021). Reviewer: Panagiotis Koumantos (Athína) MSC: 76W05 35Q35 PDF BibTeX XML Cite \textit{J. Yang}, J. Math. Anal. Appl. 498, No. 2, Article ID 124973, 17 p. (2021; Zbl 1464.76216) Full Text: DOI OpenURL
Westernacher-Schneider, John Ryan; Markakis, Charalampos; Tsao, Bing Jyun Hamilton-Jacobi hydrodynamics of pulsating relativistic stars. (English) Zbl 1478.83045 Classical Quantum Gravity 37, No. 15, Article ID 155005, 23 p. (2020). MSC: 83C27 83C55 70H20 85A15 65F22 49S05 49J20 PDF BibTeX XML Cite \textit{J. R. Westernacher-Schneider} et al., Classical Quantum Gravity 37, No. 15, Article ID 155005, 23 p. (2020; Zbl 1478.83045) Full Text: DOI arXiv OpenURL
Yang, Jiaqi Well-posedness of electrohydrodynamic waves under vertical electric field. (English) Zbl 1464.35263 Z. Angew. Math. Phys. 71, No. 5, Paper No. 171, 19 p. (2020). MSC: 35Q35 76W05 35A01 35A02 PDF BibTeX XML Cite \textit{J. Yang}, Z. Angew. Math. Phys. 71, No. 5, Paper No. 171, 19 p. (2020; Zbl 1464.35263) Full Text: DOI OpenURL
Chen, Haoyang; Zhou, Yi Global regularity for Einstein-Klein-Gordon system with \(U(1)\times\mathbb{R}\) isometry group. I. (English) Zbl 1462.35387 Chin. Ann. Math., Ser. B 41, No. 6, 939-966 (2020). MSC: 35Q76 35L70 35B65 PDF BibTeX XML Cite \textit{H. Chen} and \textit{Y. Zhou}, Chin. Ann. Math., Ser. B 41, No. 6, 939--966 (2020; Zbl 1462.35387) Full Text: DOI OpenURL
Su, Qingtang Long time behavior of 2D water waves with point vortices. (English) Zbl 1456.76026 Commun. Math. Phys. 380, No. 3, 1173-1266 (2020). MSC: 76B15 76B47 76M40 35Q35 PDF BibTeX XML Cite \textit{Q. Su}, Commun. Math. Phys. 380, No. 3, 1173--1266 (2020; Zbl 1456.76026) Full Text: DOI arXiv OpenURL
Ming, Mei; Wang, Chao Water waves problem with surface tension in a corner domain. I: A priori estimates with constrained contact angle. (English) Zbl 1450.35219 SIAM J. Math. Anal. 52, No. 5, 4861-4899 (2020). MSC: 35Q35 35B30 35Q31 76B03 76B15 35B45 PDF BibTeX XML Cite \textit{M. Ming} and \textit{C. Wang}, SIAM J. Math. Anal. 52, No. 5, 4861--4899 (2020; Zbl 1450.35219) Full Text: DOI arXiv OpenURL
Su, Qingtang Partial justification of the Peregrine soliton from the 2D full water waves. (English) Zbl 1442.35318 Arch. Ration. Mech. Anal. 237, No. 3, 1517-1613 (2020). MSC: 35Q31 76B25 35B40 35Q55 35Q86 86A05 PDF BibTeX XML Cite \textit{Q. Su}, Arch. Ration. Mech. Anal. 237, No. 3, 1517--1613 (2020; Zbl 1442.35318) Full Text: DOI arXiv OpenURL
Wang, Zhan; Yang, Jiaqi Energy estimates and local well-posedness of 3D interfacial hydroelastic waves between two incompressible fluids. (English) Zbl 1435.76018 J. Differ. Equations 269, No. 7, 6055-6087 (2020). MSC: 76B15 74F10 35Q31 35R35 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{J. Yang}, J. Differ. Equations 269, No. 7, 6055--6087 (2020; Zbl 1435.76018) Full Text: DOI Link OpenURL
Hao, Chengchun; Luo, Tao Ill-posedness of free boundary problem of the incompressible ideal MHD. (English) Zbl 1439.35396 Commun. Math. Phys. 376, No. 1, 259-286 (2020). MSC: 35Q35 76W05 76U05 76B03 35R25 35R35 PDF BibTeX XML Cite \textit{C. Hao} and \textit{T. Luo}, Commun. Math. Phys. 376, No. 1, 259--286 (2020; Zbl 1439.35396) Full Text: DOI arXiv OpenURL
Disconzi, Marcelo M.; Luo, Chenyun On the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. (English) Zbl 1437.35556 Arch. Ration. Mech. Anal. 237, No. 2, 829-897 (2020). MSC: 35Q31 76N10 76B45 35R35 PDF BibTeX XML Cite \textit{M. M. Disconzi} and \textit{C. Luo}, Arch. Ration. Mech. Anal. 237, No. 2, 829--897 (2020; Zbl 1437.35556) Full Text: DOI arXiv OpenURL
Roberts, Jay; Shkoller, Steve; Sideris, Thomas C. Affine motion of 2d incompressible fluids surrounded by vacuum and flows in \(\text{SL}(2,\mathbb{R})\). (English) Zbl 1450.76042 Commun. Math. Phys. 375, No. 2, 1003-1040 (2020). MSC: 76W05 35Q35 35Q60 53Z05 PDF BibTeX XML Cite \textit{J. Roberts} et al., Commun. Math. Phys. 375, No. 2, 1003--1040 (2020; Zbl 1450.76042) Full Text: DOI arXiv OpenURL
Ginsberg, Daniel; Lindblad, Hans; Luo, Chenyun Local well-posedness for the motion of a compressible, self-gravitating liquid with free surface boundary. (English) Zbl 1439.35383 Arch. Ration. Mech. Anal. 236, No. 2, 603-733 (2020). MSC: 35Q31 76N10 76B03 76B15 35R35 PDF BibTeX XML Cite \textit{D. Ginsberg} et al., Arch. Ration. Mech. Anal. 236, No. 2, 603--733 (2020; Zbl 1439.35383) Full Text: DOI arXiv OpenURL
Luo, Chenyun; Zhang, Junyan A regularity result for the incompressible magnetohydrodynamics equations with free surface boundary. (English) Zbl 1434.35111 Nonlinearity 33, No. 4, 1499-1527 (2020). MSC: 35Q35 76W05 35B45 35B65 35R35 76D17 PDF BibTeX XML Cite \textit{C. Luo} and \textit{J. Zhang}, Nonlinearity 33, No. 4, 1499--1527 (2020; Zbl 1434.35111) Full Text: DOI arXiv OpenURL
Gu, Xumin; Wang, Fan Well-posedness of the free boundary problem in incompressible elastodynamics under the mixed type stability condition. (English) Zbl 1427.35373 J. Math. Anal. Appl. 482, No. 1, Article ID 123529, 30 p. (2020). MSC: 35R35 35Q35 76B15 76B03 76W05 PDF BibTeX XML Cite \textit{X. Gu} and \textit{F. Wang}, J. Math. Anal. Appl. 482, No. 1, Article ID 123529, 30 p. (2020; Zbl 1427.35373) Full Text: DOI arXiv OpenURL
Agrawal, Siddhant Rigidity of singularities of 2D gravity water waves. (English) Zbl 1431.35113 J. Differ. Equations 268, No. 3, 1220-1249 (2020). MSC: 35Q31 76B15 76B03 35A21 PDF BibTeX XML Cite \textit{S. Agrawal}, J. Differ. Equations 268, No. 3, 1220--1249 (2020; Zbl 1431.35113) Full Text: DOI arXiv OpenURL
Ginsberg, Daniel A priori estimates for a relativistic liquid with free surface boundary. (English) Zbl 1441.35194 J. Hyperbolic Differ. Equ. 16, No. 3, 401-442 (2019). MSC: 35Q35 35Q75 35R35 76B03 76Y05 PDF BibTeX XML Cite \textit{D. Ginsberg}, J. Hyperbolic Differ. Equ. 16, No. 3, 401--442 (2019; Zbl 1441.35194) Full Text: DOI arXiv OpenURL
Wang, Zhan; Yang, Jiaqi Well-posedness of axisymmetric nonlinear surface waves on a ferrofluid jet. (English) Zbl 1433.35255 J. Differ. Equations 267, No. 9, 5290-5317 (2019). MSC: 35Q31 76B15 76W05 76B45 76B03 35B07 35R35 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{J. Yang}, J. Differ. Equations 267, No. 9, 5290--5317 (2019; Zbl 1433.35255) Full Text: DOI Link OpenURL
Disconzi, Marcelo M.; Kukavica, Igor A priori estimates for the free-boundary Euler equations with surface tension in three dimensions. (English) Zbl 1421.35260 Nonlinearity 32, No. 9, 3369-3405 (2019). MSC: 35Q31 35R37 35B45 35B65 76B45 PDF BibTeX XML Cite \textit{M. M. Disconzi} and \textit{I. Kukavica}, Nonlinearity 32, No. 9, 3369--3405 (2019; Zbl 1421.35260) Full Text: DOI arXiv OpenURL
Wu, Sijue Wellposedness of the 2D full water wave equation in a regime that allows for non-\(C^1\) interfaces. (English) Zbl 1440.76017 Invent. Math. 217, No. 2, 241-375 (2019). Reviewer: Theodore D. Drivas (Princeton) MSC: 76B15 35Q35 PDF BibTeX XML Cite \textit{S. Wu}, Invent. Math. 217, No. 2, 241--375 (2019; Zbl 1440.76017) Full Text: DOI arXiv OpenURL
Gu, Xumin; Wang, Yanjin On the construction of solutions to the free-surface incompressible ideal magnetohydrodynamic equations. (English) Zbl 1477.35164 J. Math. Pures Appl. (9) 128, 1-41 (2019). Reviewer: Cheng He (Beijing) MSC: 35Q35 35L65 76B03 76W05 35R35 35A01 35A02 PDF BibTeX XML Cite \textit{X. Gu} and \textit{Y. Wang}, J. Math. Pures Appl. (9) 128, 1--41 (2019; Zbl 1477.35164) Full Text: DOI arXiv OpenURL
Ionescu, A. D.; Pusateri, F. Long-time existence for multi-dimensional periodic water waves. (English) Zbl 1420.35243 Geom. Funct. Anal. 29, No. 3, 811-870 (2019). MSC: 35Q35 76B15 76B45 35B40 PDF BibTeX XML Cite \textit{A. D. Ionescu} and \textit{F. Pusateri}, Geom. Funct. Anal. 29, No. 3, 811--870 (2019; Zbl 1420.35243) Full Text: DOI arXiv OpenURL
Lian, Jiali Global well-posedness of the free-surface incompressible Euler equations with damping. (English) Zbl 1416.35196 J. Differ. Equations 267, No. 2, 1066-1094 (2019). MSC: 35Q31 35L60 35Q35 35R35 76B03 76B15 76B45 PDF BibTeX XML Cite \textit{J. Lian}, J. Differ. Equations 267, No. 2, 1066--1094 (2019; Zbl 1416.35196) Full Text: DOI OpenURL
de Poyferré, Thibault A priori estimates for water waves with emerging bottom. (English) Zbl 1501.35291 Arch. Ration. Mech. Anal. 232, No. 2, 763-812 (2019). MSC: 35Q31 35B45 76B15 35R35 PDF BibTeX XML Cite \textit{T. de Poyferré}, Arch. Ration. Mech. Anal. 232, No. 2, 763--812 (2019; Zbl 1501.35291) Full Text: DOI arXiv OpenURL
Hu, Xianpeng; Huang, Yongting Well-posedness of the free boundary problem for incompressible elastodynamics. (English) Zbl 1417.35193 J. Differ. Equations 266, No. 12, 7844-7889 (2019). Reviewer: Dongbing Zha (Shanghai) MSC: 35Q74 74B10 35L40 35R35 76B03 PDF BibTeX XML Cite \textit{X. Hu} and \textit{Y. Huang}, J. Differ. Equations 266, No. 12, 7844--7889 (2019; Zbl 1417.35193) Full Text: DOI arXiv OpenURL
Wang, Xuecheng Global solution for the 3D gravity water waves system above a flat bottom. (English) Zbl 1412.35245 Adv. Math. 346, 805-886 (2019). MSC: 35Q31 76B15 35B65 35P25 35C07 PDF BibTeX XML Cite \textit{X. Wang}, Adv. Math. 346, 805--886 (2019; Zbl 1412.35245) Full Text: DOI arXiv OpenURL
Coutand, Daniel Finite-time singularity formation for incompressible Euler moving interfaces in the plane. (English) Zbl 1411.76011 Arch. Ration. Mech. Anal. 232, No. 1, 337-387 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 76B03 76B45 35Q31 PDF BibTeX XML Cite \textit{D. Coutand}, Arch. Ration. Mech. Anal. 232, No. 1, 337--387 (2019; Zbl 1411.76011) Full Text: DOI OpenURL
Gu, Xumin Well-posedness of axially symmetric incompressible ideal magnetohydrodynamic equations with vacuum under the non-collinearity condition. (English) Zbl 1404.35284 Commun. Pure Appl. Anal. 18, No. 2, 569-602 (2019). MSC: 35L65 35Q35 76B03 76W05 PDF BibTeX XML Cite \textit{X. Gu}, Commun. Pure Appl. Anal. 18, No. 2, 569--602 (2019; Zbl 1404.35284) Full Text: DOI arXiv OpenURL
Alazard, Thomas; Burq, Nicolas; Zuily, Claude Strichartz estimates and the Cauchy problem for the gravity water waves equations. (English) Zbl 1447.35001 Memoirs of the American Mathematical Society 1229. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3203-4/pbk; 978-1-4704-4921-6/ebook). v, 108 p. (2018). MSC: 35-02 35A27 35Q35 35S50 35S15 76B15 PDF BibTeX XML Cite \textit{T. Alazard} et al., Strichartz estimates and the Cauchy problem for the gravity water waves equations. Providence, RI: American Mathematical Society (AMS) (2018; Zbl 1447.35001) Full Text: DOI arXiv OpenURL
Luo, Chenyun On the motion of a compressible gravity water wave with vorticity. (English) Zbl 1414.35158 Ann. PDE 4, No. 2, Paper No. 20, 71 p. (2018). MSC: 35Q31 35A35 35B45 35B40 76N10 PDF BibTeX XML Cite \textit{C. Luo}, Ann. PDE 4, No. 2, Paper No. 20, 71 p. (2018; Zbl 1414.35158) Full Text: DOI arXiv OpenURL
Ionescu, Alexandru D.; Pusateri, Fabio Global regularity for 2D water waves with surface tension. (English) Zbl 1435.76002 Memoirs of the American Mathematical Society 1227. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3103-7/print; 978-1-4704-4917-9/ebook). v, 123 p. (2018). MSC: 76-02 76B15 35Q35 35R35 PDF BibTeX XML Cite \textit{A. D. Ionescu} and \textit{F. Pusateri}, Global regularity for 2D water waves with surface tension. Providence, RI: American Mathematical Society (AMS) (2018; Zbl 1435.76002) Full Text: DOI arXiv OpenURL
Ionescu, A. D.; Pusateri, F. Recent advances on the global regularity for irrotational water waves. (English) Zbl 1404.76041 Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 376, No. 2111, Article ID 20170089, 28 p. (2018). MSC: 76B15 35Q35 PDF BibTeX XML Cite \textit{A. D. Ionescu} and \textit{F. Pusateri}, Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 376, No. 2111, Article ID 20170089, 28 p. (2018; Zbl 1404.76041) Full Text: DOI arXiv OpenURL
Düll, Wolf-Patrick On the mathematical description of time-dependent surface water waves. (English) Zbl 1446.76079 Jahresber. Dtsch. Math.-Ver. 120, No. 2, 117-141 (2018). Reviewer: Balswaroop Bhatt (St. Augustine) MSC: 76B15 76-02 35Q35 35Q53 35Q55 PDF BibTeX XML Cite \textit{W.-P. Düll}, Jahresber. Dtsch. Math.-Ver. 120, No. 2, 117--141 (2018; Zbl 1446.76079) Full Text: DOI arXiv OpenURL
Elgindi, Tarek; Lee, Donghyun Uniform regularity for free-boundary Navier-Stokes equations with surface tension. (English) Zbl 1383.76039 J. Hyperbolic Differ. Equ. 15, No. 1, 37-118 (2018). MSC: 76B03 76B45 76D03 76D05 76D45 35Q30 35Q31 PDF BibTeX XML Cite \textit{T. Elgindi} and \textit{D. Lee}, J. Hyperbolic Differ. Equ. 15, No. 1, 37--118 (2018; Zbl 1383.76039) Full Text: DOI arXiv OpenURL
Lian, Jiali Zero surface tension limit of the free-surface incompressible Euler equations with damping. (English) Zbl 1384.35075 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 169, 218-241 (2018). MSC: 35Q31 35L60 35R35 76B03 76B15 PDF BibTeX XML Cite \textit{J. Lian}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 169, 218--241 (2018; Zbl 1384.35075) Full Text: DOI OpenURL
Mei, Yu; Wang, Yong; Xin, Zhouping Uniform regularity for the free surface compressible Navier-Stokes equations with or without surface tension. (English) Zbl 1383.35169 Math. Models Methods Appl. Sci. 28, No. 2, 259-336 (2018). MSC: 35Q35 35B65 76N10 35B40 35Q31 76N17 35R35 PDF BibTeX XML Cite \textit{Y. Mei} et al., Math. Models Methods Appl. Sci. 28, No. 2, 259--336 (2018; Zbl 1383.35169) Full Text: DOI arXiv OpenURL
Trakhinin, Yuri Well-posedness of the free boundary problem in compressible elastodynamics. (English) Zbl 1432.76211 J. Differ. Equations 264, No. 3, 1661-1715 (2018). MSC: 76N10 35B30 35L50 35Q35 35R35 PDF BibTeX XML Cite \textit{Y. Trakhinin}, J. Differ. Equations 264, No. 3, 1661--1715 (2018; Zbl 1432.76211) Full Text: DOI arXiv OpenURL
de Poyferré, Thibault; Nguyen, Quang-Huy A paradifferential reduction for the gravity-capillary waves system at low regularity and applications. (Une réduction paradifférentielle du système des vagues de gravité-capillarité à basse régularité et applications.) (English. French summary) Zbl 1397.35237 Bull. Soc. Math. Fr. 145, No. 4, 643-710 (2017). Reviewer: Vladimir Mityushev (Kraków) MSC: 35Q35 35A01 35B45 35B65 76B15 35B44 PDF BibTeX XML Cite \textit{T. de Poyferré} and \textit{Q.-H. Nguyen}, Bull. Soc. Math. Fr. 145, No. 4, 643--710 (2017; Zbl 1397.35237) Full Text: DOI arXiv OpenURL
Kukavica, Igor; Tuffaha, Amjad; Vicol, Vlad On the local existence and uniqueness for the 3D Euler equation with a free interface. (English) Zbl 1384.35074 Appl. Math. Optim. 76, No. 3, 535-563 (2017). MSC: 35Q31 35A01 35A02 76U05 76B03 35R35 PDF BibTeX XML Cite \textit{I. Kukavica} et al., Appl. Math. Optim. 76, No. 3, 535--563 (2017; Zbl 1384.35074) Full Text: DOI OpenURL
Nguyen, Huy Quang A sharp Cauchy theory for the 2D gravity-capillary waves. (English) Zbl 1451.76028 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 7, 1793-1836 (2017). MSC: 76B15 76B03 35A23 PDF BibTeX XML Cite \textit{H. Q. Nguyen}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 7, 1793--1836 (2017; Zbl 1451.76028) Full Text: DOI arXiv OpenURL
Bieri, Lydia; Miao, Shuang; Shahshahani, Sohrab; Wu, Sijue On the motion of a self-gravitating incompressible fluid with free boundary. (English) Zbl 1407.35160 Commun. Math. Phys. 355, No. 1, 161-243 (2017). MSC: 35Q35 35R35 76B99 PDF BibTeX XML Cite \textit{L. Bieri} et al., Commun. Math. Phys. 355, No. 1, 161--243 (2017; Zbl 1407.35160) Full Text: DOI arXiv OpenURL
Zeng, Huihui Global resolution of the physical vacuum singularity for three-dimensional isentropic inviscid flows with damping in spherically symmetric motions. (English) Zbl 1383.35150 Arch. Ration. Mech. Anal. 226, No. 1, 33-82 (2017). Reviewer: Gelu Paşa (Bucureşti) MSC: 35Q31 76N15 35B65 76S05 35B40 35B06 76L05 35C06 PDF BibTeX XML Cite \textit{H. Zeng}, Arch. Ration. Mech. Anal. 226, No. 1, 33--82 (2017; Zbl 1383.35150) Full Text: DOI OpenURL
Ifrim, Mihaela; Tataru, Daniel The lifespan of small data solutions in two dimensional capillary water waves. (English) Zbl 1375.35347 Arch. Ration. Mech. Anal. 225, No. 3, 1279-1346 (2017). MSC: 35Q31 76B45 PDF BibTeX XML Cite \textit{M. Ifrim} and \textit{D. Tataru}, Arch. Ration. Mech. Anal. 225, No. 3, 1279--1346 (2017; Zbl 1375.35347) Full Text: DOI arXiv OpenURL
Lee, Donghyun Uniform estimate of viscous free-boundary magnetohydrodynamics with zero vacuum magnetic field. (English) Zbl 1373.35221 SIAM J. Math. Anal. 49, No. 4, 2710-2789 (2017). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 76W05 35Q31 35R35 76N17 76D10 PDF BibTeX XML Cite \textit{D. Lee}, SIAM J. Math. Anal. 49, No. 4, 2710--2789 (2017; Zbl 1373.35221) Full Text: DOI arXiv OpenURL
Wang, Chao; Zhang, ZhiFei Break-down criterion for the water-wave equation. (English) Zbl 1368.35216 Sci. China, Math. 60, No. 1, 21-58 (2017). MSC: 35Q31 35Q35 35R35 76B15 35B44 35B65 35L72 PDF BibTeX XML Cite \textit{C. Wang} and \textit{Z. Zhang}, Sci. China, Math. 60, No. 1, 21--58 (2017; Zbl 1368.35216) Full Text: DOI arXiv OpenURL
Sideris, Thomas C. Global existence and asymptotic behavior of affine motion of 3D ideal fluids surrounded by vacuum. (English) Zbl 1367.35115 Arch. Ration. Mech. Anal. 225, No. 1, 141-176 (2017). MSC: 35Q31 76N15 35B40 35A01 53D25 35R35 PDF BibTeX XML Cite \textit{T. C. Sideris}, Arch. Ration. Mech. Anal. 225, No. 1, 141--176 (2017; Zbl 1367.35115) Full Text: DOI arXiv OpenURL
Hao, Chengchun On the motion of free interface in ideal incompressible MHD. (English) Zbl 1372.35236 Arch. Ration. Mech. Anal. 224, No. 2, 515-553 (2017). Reviewer: Vladimir Mityushev (Kraków) MSC: 35Q35 35R35 76W05 78A25 35B45 76X05 PDF BibTeX XML Cite \textit{C. Hao}, Arch. Ration. Mech. Anal. 224, No. 2, 515--553 (2017; Zbl 1372.35236) Full Text: DOI arXiv OpenURL
Masmoudi, Nader; Rousset, Frederic Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations. (English) Zbl 1359.35133 Arch. Ration. Mech. Anal. 223, No. 1, 301-417 (2017). MSC: 35Q30 35R35 76D05 35B45 35B65 PDF BibTeX XML Cite \textit{N. Masmoudi} and \textit{F. Rousset}, Arch. Ration. Mech. Anal. 223, No. 1, 301--417 (2017; Zbl 1359.35133) Full Text: DOI arXiv OpenURL
Nguyen, Quang-Huy Hadamard well-posedness of the gravity water waves system. (English) Zbl 1358.35127 J. Hyperbolic Differ. Equ. 13, No. 4, 791-820 (2016). MSC: 35Q35 76B03 76B15 35L80 PDF BibTeX XML Cite \textit{Q.-H. Nguyen}, J. Hyperbolic Differ. Equ. 13, No. 4, 791--820 (2016; Zbl 1358.35127) Full Text: DOI arXiv OpenURL
Hunter, John K.; Ifrim, Mihaela; Tataru, Daniel Two dimensional water waves in holomorphic coordinates. (English) Zbl 1358.35121 Commun. Math. Phys. 346, No. 2, 483-552 (2016). MSC: 35Q35 76B03 76B15 PDF BibTeX XML Cite \textit{J. K. Hunter} et al., Commun. Math. Phys. 346, No. 2, 483--552 (2016; Zbl 1358.35121) Full Text: DOI arXiv OpenURL
Ignatova, Mihaela; Kukavica, Igor On the local existence of the free-surface Euler equation with surface tension. (English) Zbl 1356.35167 Asymptotic Anal. 100, No. 1-2, 63-86 (2016). MSC: 35Q31 76D45 35A01 35R35 35B45 PDF BibTeX XML Cite \textit{M. Ignatova} and \textit{I. Kukavica}, Asymptotic Anal. 100, No. 1--2, 63--86 (2016; Zbl 1356.35167) Full Text: DOI OpenURL
Ionescu, Alexandru D.; Pusateri, Fabio Global analysis of a model for capillary water waves in two dimensions. (English) Zbl 1351.35117 Commun. Pure Appl. Math. 69, No. 11, 2015-2071 (2016). MSC: 35Q31 76B45 35B65 35B45 PDF BibTeX XML Cite \textit{A. D. Ionescu} and \textit{F. Pusateri}, Commun. Pure Appl. Math. 69, No. 11, 2015--2071 (2016; Zbl 1351.35117) Full Text: DOI arXiv OpenURL
Ifrim, Mihaela; Tataru, Daniel Two dimensional water waves in holomorphic coordinates. II: Global solutions. (Ondes aquatiques de dimension 2 en coordonnées holomorphes II : solutions globales.) (English) Zbl 1360.35179 Bull. Soc. Math. Fr. 144, No. 2, 369-394 (2016). Reviewer: Cyril Godey (Besançon) MSC: 35Q35 76B15 PDF BibTeX XML Cite \textit{M. Ifrim} and \textit{D. Tataru}, Bull. Soc. Math. Fr. 144, No. 2, 369--394 (2016; Zbl 1360.35179) Full Text: DOI arXiv Link OpenURL
Kukavica, Igor; Tuffaha, Amjad; Vicol, Vlad; Wang, Fei On the existence for the free interface 2D Euler equation with a localized vorticity condition. (English) Zbl 1351.35118 Appl. Math. Optim. 73, No. 3, 523-544 (2016). MSC: 35Q31 35B45 76D03 76U05 PDF BibTeX XML Cite \textit{I. Kukavica} et al., Appl. Math. Optim. 73, No. 3, 523--544 (2016; Zbl 1351.35118) Full Text: DOI OpenURL
Coutand, Daniel; Shkoller, Steve On the impossibility of finite-time splash singularities for vortex sheets. (English) Zbl 1338.35343 Arch. Ration. Mech. Anal. 221, No. 2, 987-1033 (2016). MSC: 35Q31 35B44 PDF BibTeX XML Cite \textit{D. Coutand} and \textit{S. Shkoller}, Arch. Ration. Mech. Anal. 221, No. 2, 987--1033 (2016; Zbl 1338.35343) Full Text: DOI arXiv OpenURL
Disconzi, Marcelo M.; Ebin, David G. The free boundary Euler equations with large surface tension. (English) Zbl 1375.35344 J. Differ. Equations 261, No. 2, 821-889 (2016). MSC: 35Q31 35R35 35B30 PDF BibTeX XML Cite \textit{M. M. Disconzi} and \textit{D. G. Ebin}, J. Differ. Equations 261, No. 2, 821--889 (2016; Zbl 1375.35344) Full Text: DOI arXiv OpenURL
Hao, Chengchun; Wang, Dehua A priori estimates for the free boundary problem of incompressible neo-Hookean elastodynamics. (English) Zbl 1382.35340 J. Differ. Equations 261, No. 1, 712-737 (2016). MSC: 35R35 35A01 35A08 35B45 35Q35 74J30 76A10 76D03 PDF BibTeX XML Cite \textit{C. Hao} and \textit{D. Wang}, J. Differ. Equations 261, No. 1, 712--737 (2016; Zbl 1382.35340) Full Text: DOI arXiv OpenURL
de Poyferré, Thibault; Nguyen, Quang-Huy Strichartz estimates and local existence for the gravity-capillary waves with non-Lipschitz initial velocity. (English) Zbl 1344.35113 J. Differ. Equations 261, No. 1, 396-438 (2016). Reviewer: Keisuke Uchikoshi (Yokosuka) MSC: 35Q35 76B15 76B07 76B45 PDF BibTeX XML Cite \textit{T. de Poyferré} and \textit{Q.-H. Nguyen}, J. Differ. Equations 261, No. 1, 396--438 (2016; Zbl 1344.35113) Full Text: DOI arXiv OpenURL
Germain, Pierre; Masmoudi, Nader; Shatah, Jalal Global existence for capillary water waves. (English) Zbl 1314.35100 Commun. Pure Appl. Math. 68, No. 4, 625-687 (2015). MSC: 35Q35 35B40 76B15 35A01 76B45 PDF BibTeX XML Cite \textit{P. Germain} et al., Commun. Pure Appl. Math. 68, No. 4, 625--687 (2015; Zbl 1314.35100) Full Text: DOI arXiv OpenURL
Ionescu, Alexandru D.; Pusateri, Fabio Global solutions for the gravity water waves system in 2d. (English) Zbl 1325.35151 Invent. Math. 199, No. 3, 653-804 (2015). Reviewer: Ruxandra Stavre (Bucureşti) MSC: 35Q31 76B15 35Q35 35R35 PDF BibTeX XML Cite \textit{A. D. Ionescu} and \textit{F. Pusateri}, Invent. Math. 199, No. 3, 653--804 (2015; Zbl 1325.35151) Full Text: DOI arXiv OpenURL
Rousset, Frédéric Inviscid limit for free-surface Navier-Stokes equations. (English) Zbl 1319.35164 Sémin. Laurent Schwartz, EDP Appl. 2012-2013, Exp. No. IV, 11 p. (2014). MSC: 35Q30 76D05 35R35 PDF BibTeX XML Cite \textit{F. Rousset}, Sémin. Laurent Schwartz, EDP Appl. 2012--2013, Exp. No. IV, 11 p. (2014; Zbl 1319.35164) Full Text: DOI Link OpenURL
Disconzi, Marcelo On a linear problem arising in dynamic boundaries. (English) Zbl 1304.35776 Evol. Equ. Control Theory 3, No. 4, 627-644 (2014). MSC: 35R35 35Q35 35D30 PDF BibTeX XML Cite \textit{M. Disconzi}, Evol. Equ. Control Theory 3, No. 4, 627--644 (2014; Zbl 1304.35776) Full Text: DOI arXiv OpenURL
Alazard, T.; Burq, N.; Zuily, C. On the Cauchy problem for gravity water waves. (English) Zbl 1308.35195 Invent. Math. 198, No. 1, 71-163 (2014). Reviewer: Keisuke Uchikoshi (Yokosuka) MSC: 35Q35 76B03 76B15 PDF BibTeX XML Cite \textit{T. Alazard} et al., Invent. Math. 198, No. 1, 71--163 (2014; Zbl 1308.35195) Full Text: DOI arXiv OpenURL
Kukavica, Igor; Tuffaha, Amjad A regularity result for the incompressible Euler equation with a free interface. (English) Zbl 1300.35085 Appl. Math. Optim. 69, No. 3, 337-358 (2014). MSC: 35Q31 35B65 76B45 76B15 35B45 35A01 PDF BibTeX XML Cite \textit{I. Kukavica} and \textit{A. Tuffaha}, Appl. Math. Optim. 69, No. 3, 337--358 (2014; Zbl 1300.35085) Full Text: DOI OpenURL
Luo, Tao; Xin, Zhouping; Zeng, Huihui Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation. (English) Zbl 1309.35065 Arch. Ration. Mech. Anal. 213, No. 3, 763-831 (2014). Reviewer: Laurent Thomann (Nantes) MSC: 35Q31 76N10 PDF BibTeX XML Cite \textit{T. Luo} et al., Arch. Ration. Mech. Anal. 213, No. 3, 763--831 (2014; Zbl 1309.35065) Full Text: DOI arXiv OpenURL
Disconzi, Marcelo M.; Ebin, David G. On the limit of large surface tension for a fluid motion with free boundary. (English) Zbl 1304.35777 Commun. Partial Differ. Equations 39, No. 4, 740-779 (2014). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 35R35 35L60 35Q31 35Q35 76B03 PDF BibTeX XML Cite \textit{M. M. Disconzi} and \textit{D. G. Ebin}, Commun. Partial Differ. Equations 39, No. 4, 740--779 (2014; Zbl 1304.35777) Full Text: DOI arXiv OpenURL
Hao, Chengchun; Luo, Tao A priori estimates for free boundary problem of incompressible inviscid magnetohydrodynamic flows. (English) Zbl 1293.35244 Arch. Ration. Mech. Anal. 212, No. 3, 805-847 (2014). MSC: 35Q35 76W05 35Q31 35B45 PDF BibTeX XML Cite \textit{C. Hao} and \textit{T. Luo}, Arch. Ration. Mech. Anal. 212, No. 3, 805--847 (2014; Zbl 1293.35244) Full Text: DOI arXiv OpenURL
Sideris, Thomas C. Spreading of the free boundary of an ideal fluid in a vacuum. (English) Zbl 06289300 J. Differ. Equations 257, No. 1, 1-14 (2014). MSC: 35-XX 76-XX PDF BibTeX XML Cite \textit{T. C. Sideris}, J. Differ. Equations 257, No. 1, 1--14 (2014; Zbl 06289300) Full Text: DOI OpenURL
Coutand, Daniel; Shkoller, Steve On the finite-time splash and splat singularities for the 3-D free-surface Euler equations. (English) Zbl 1285.35071 Commun. Math. Phys. 325, No. 1, 143-183 (2014). Reviewer: Thomas Ernst (Uppsala) MSC: 35Q31 PDF BibTeX XML Cite \textit{D. Coutand} and \textit{S. Shkoller}, Commun. Math. Phys. 325, No. 1, 143--183 (2014; Zbl 1285.35071) Full Text: DOI arXiv OpenURL
Castro, Angel; Córdoba, Diego; Fefferman, Charles; Gancedo, Francisco; Gómez-Serrano, Javier Finite time singularities for the free boundary incompressible Euler equations. (English) Zbl 1291.35199 Ann. Math. (2) 178, No. 3, 1061-1134 (2013). Reviewer: Gelu Paşa (Bucureşti) MSC: 35Q31 76D05 76D27 76B15 35B44 PDF BibTeX XML Cite \textit{A. Castro} et al., Ann. Math. (2) 178, No. 3, 1061--1134 (2013; Zbl 1291.35199) Full Text: DOI arXiv OpenURL
Guo, Yan; Tice, Ian Almost exponential decay of periodic viscous surface waves without surface tension. (English) Zbl 1320.35259 Arch. Ration. Mech. Anal. 207, No. 2, 459-531 (2013). MSC: 35Q30 35R35 76D03 35B40 76E17 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{I. Tice}, Arch. Ration. Mech. Anal. 207, No. 2, 459--531 (2013; Zbl 1320.35259) Full Text: DOI OpenURL
Castro, Angel; Córdoba, Diego; Fefferman, Charles; Gancedo, Francisco; Gómez-Serrano, Javier Finite time singularities for water waves with surface tension. (English) Zbl 1328.76012 J. Math. Phys. 53, No. 11, 115622, 26 p. (2012). MSC: 76B15 76D45 35A20 35Q35 PDF BibTeX XML Cite \textit{A. Castro} et al., J. Math. Phys. 53, No. 11, 115622, 26 p. (2012; Zbl 1328.76012) Full Text: DOI arXiv OpenURL
Castro, Angel; Córdoba, Diego; Fefferman, Charles L.; Gancedo, Francisco; Gómez-Serrano, Javier Splash singularity for water waves. (English) Zbl 1256.76018 Proc. Natl. Acad. Sci. USA 109, No. 3, 733-738 (2012). MSC: 76B15 35Q35 35B35 PDF BibTeX XML Cite \textit{A. Castro} et al., Proc. Natl. Acad. Sci. USA 109, No. 3, 733--738 (2012; Zbl 1256.76018) Full Text: DOI arXiv OpenURL
Germain, Pierre; Masmoudi, Nader; Shatah, Jalal Global solutions for the gravity water waves equation in dimension 3. (English) Zbl 1241.35003 Ann. Math. (2) 175, No. 2, 691-754 (2012). Reviewer: Valeriu Al. Sava (Paris) MSC: 35A01 35L45 35Q31 76B15 PDF BibTeX XML Cite \textit{P. Germain} et al., Ann. Math. (2) 175, No. 2, 691--754 (2012; Zbl 1241.35003) Full Text: DOI OpenURL
Shatah, Jalal; Zeng, Chongchun Local well-posedness for fluid interface problems. (English) Zbl 1262.76034 Arch. Ration. Mech. Anal. 199, No. 2, 653-705 (2011). MSC: 76D45 76D03 35Q35 PDF BibTeX XML Cite \textit{J. Shatah} and \textit{C. Zeng}, Arch. Ration. Mech. Anal. 199, No. 2, 653--705 (2011; Zbl 1262.76034) Full Text: DOI OpenURL
Pusateri, Fabio On the limit as the surface tension and density ratio tend to zero for the two-phase Euler equations. (English) Zbl 1222.35147 J. Hyperbolic Differ. Equ. 8, No. 2, 347-373 (2011). Reviewer: Nicolae Pop (Baia Mare) MSC: 35Q31 PDF BibTeX XML Cite \textit{F. Pusateri}, J. Hyperbolic Differ. Equ. 8, No. 2, 347--373 (2011; Zbl 1222.35147) Full Text: DOI arXiv OpenURL
Rousset, Frederic; Tzvetkov, Nikolay Transverse instability of the line solitary water-waves. (English) Zbl 1225.35024 Invent. Math. 184, No. 2, 257-388 (2011). Reviewer: Il’ya Sh. Mogilevskij (Tver’) MSC: 35B35 35Q35 35C08 76B25 76B07 35R35 PDF BibTeX XML Cite \textit{F. Rousset} and \textit{N. Tzvetkov}, Invent. Math. 184, No. 2, 257--388 (2011; Zbl 1225.35024) Full Text: DOI arXiv OpenURL
Wu, Sijue Global wellposedness of the 3-D full water wave problem. (English) Zbl 1221.35304 Invent. Math. 184, No. 1, 125-220 (2011). Reviewer: Gelu Paşa (Bucureşti) MSC: 35Q35 76B15 76M40 PDF BibTeX XML Cite \textit{S. Wu}, Invent. Math. 184, No. 1, 125--220 (2011; Zbl 1221.35304) Full Text: DOI OpenURL
Christianson, Hans; Hur, Vera Mikyoung; Staffilani, Gigliola Strichartz estimates for the water-wave problem with surface tension. (English) Zbl 1280.35107 Commun. Partial Differ. Equations 35, No. 10-12, 2195-2252 (2010). MSC: 35Q35 76B15 35B30 35B45 76B03 PDF BibTeX XML Cite \textit{H. Christianson} et al., Commun. Partial Differ. Equations 35, No. 10--12, 2195--2252 (2010; Zbl 1280.35107) Full Text: DOI arXiv OpenURL
Nordgren, Karl Håkan Well-posedness for the equations of motion of an inviscid, incompressible, self-gravitating fluid with free boundary. (English) Zbl 1205.35344 J. Hyperbolic Differ. Equ. 7, No. 3, 581-604 (2010). MSC: 35R35 35Q35 76B03 76Y05 PDF BibTeX XML Cite \textit{K. H. Nordgren}, J. Hyperbolic Differ. Equ. 7, No. 3, 581--604 (2010; Zbl 1205.35344) Full Text: DOI OpenURL
Córdoba, Antonio; Córdoba, Diego; Gancedo, Francisco Interface evolution: water waves in 2-D. (English) Zbl 1183.35276 Adv. Math. 223, No. 1, 120-173 (2010). Reviewer: Nikolai V. Krasnoschok (Donetsk) MSC: 35R35 35Q31 76B15 76B03 PDF BibTeX XML Cite \textit{A. Córdoba} et al., Adv. Math. 223, No. 1, 120--173 (2010; Zbl 1183.35276) Full Text: DOI arXiv OpenURL