×

Oscillation of second order nonlinear delay damped difference equations. (English) Zbl 1123.39008

The authors study the second-order nonlinear delay difference equation with damping term \[ \Delta^2 x_n+p_n\Delta x_n+F(n,x_{n-\tau},\Delta x_{n-\sigma})=0,\quad n=0,1,2,\ldots,\tag{1} \] where \((p_n)_n\) is a nonnegative real sequence, \(F:\mathbb N\times \mathbb R^2\to \mathbb R\) is continuous for each \(n\), \(\,\tau,\,\sigma\in \mathbb N\) and \(\Delta\) denote the forward difference operator \(\Delta x_n=x_{n+1}-x_n\).
Under some assumptions on \(F\) and \((p_n)_n\), some oscillation criteria for the above equation are proved, which generalize the results of S. R. Grace and H. A. El-Morshedy [Math. Bohemica 125, 421–430 (2000; Zbl 0969.39005)]. Two particular cases of the equation (1), namely
\[ \begin{aligned} \Delta^2x_n+p_n\Delta x_n+q_n x_{n-\sigma}=0, &\quad n=0,1,2,\dots,\\ \Delta^2x_n+p_n\Delta x_n+q_n g(x_{n-\sigma})=e_n, &\quad n=0,1,2,\dots,\end{aligned} \]
where \((e_n)_n\) is a sequence of real numbers, \(xg(x)>0\) for \(x\not=0\) and \(g'(x)\geq \eta>0\), are also investigated.

MSC:

39A11 Stability of difference equations (MSC2000)
39A10 Additive difference equations

Citations:

Zbl 0969.39005
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agarwal, R. P.: Difference Equations and Inequalities, Theory, Methods and Applications, Second Edition, Revised and Expanded, Marcel Dekker, New York, 2000
[2] Agarwal, R. P., Wong, P. J. Y.: Advanced Topices in Difference Equations, Kluwer Academic Publishers, Drodrecht, 1997 · Zbl 0878.39001
[3] Cheng, S. S., Li, H. J.: A comparison theorem for asymptotically monotone solutions of nonlinear difference equations. Bull. Inst. Acad. Sinica, 21, 299–302 (1993) · Zbl 0791.39002
[4] Cheng, S. S., Li, H. J.: Bounded solutions of nonlinear difference equations. Tamaking J. Math, 21, 137–142 (1991) · Zbl 0721.39001
[5] Cheng, S. S., Yan, T. C., Li, H. J.: Oscillation criteria for second order difference equations. Funkcialaj Ekv., 34, 233–239 (1991) · Zbl 0773.39001
[6] Eloe, P. W., Raffoul, Y. D., Reid, T., Yin, K. C.: Positive solutions of nonlinear functional difference equations. Math. Comp. Appl., 42, 639–646 (2000) · Zbl 0998.39003
[7] Grace, S. R.: Oscillatory behavior of certain difference equations. Math. Slovaca, 50, 345–355 (2000) · Zbl 0990.39001
[8] Grace, S. R., El–Morshedy, H. A.: On the oscillation of certain difference equations. Math. Bohemica, 125, 421–430 (2000) · Zbl 0969.39005
[9] Hooker, J., Patula, W. T.: Riccati type transformations for second–order linear difference equations. J. Math. Anal. Appl., 82, 451–462 (1981) · Zbl 0471.39007
[10] Hooker, J., Patula, W. T.: A second–order nonlinear difference equations: oscillation and asymptotic behavior. J. Math. Anal. Appl., 91, 9–29 (1983) · Zbl 0508.39005
[11] Koplatadze, R.: Oscillation of linear difference equations with deviating arguments. Comp. Math. Appl., 42, 477–486 (2001) · Zbl 1007.39002
[12] Li, H. J., Cheng, S. S.: An oscillation theorem for a second order nonlinear difference equation. Utilitas Mathematica, 44, 177–181 (1993) · Zbl 0791.39003
[13] Li, H. J., Cheng, S. S.: Asymptotic monotone solutions of a nonlinear difference equation. Tamaking J. Math., 24, 269–282 (1993) · Zbl 0787.39005
[14] Li, W. T., Cheng, S. S.: Oscillation criteria for a nonlinear difference equation. Comp. Math. Appl., 36, 87–94 (1998) · Zbl 0932.39006
[15] Li, W. T., Fan, X. L., Zhong, C. K.: On unbounded solutions of second order difference equations with a singuar nonlinear term. J. Math. Anal. Appl., 246, 80–88 (2000) · Zbl 0962.39005
[16] Li, W. T., Fan, X. L.: Oscillation criteria for second–order nonlinear difference equations with damped term. Comp. Math. Appl., 37, 17–30 (1999) · Zbl 0937.39011
[17] Liu, Z. R., Chen, W. D., Yu, Y. H.: Oscillation criteria for second–order nonlinear difference equations. Kyyngpook Math. J., 39, 127–132 (1999) · Zbl 0945.34051
[18] Medina, R.: The asymptotic behavior of the solutions of a Voterra difference equations. Comp. Math. Appl., 34, 19–26 (1997) · Zbl 0880.39011
[19] Migda, M.: Asymptotic behavior of solutions of nonlinear delay difference equations. Fasc. Math., 31, 57–62 (2001) · Zbl 0990.39006
[20] Migda, M., Schmeidel, E.: On the asymptotic behavior of solutions of nonlinear delay difference equations. Fasc. Math., 31, 63–69 (2001) · Zbl 0990.39007
[21] Popenda, J.: Oscillation and nonoscillation theorems for second–order difference equations. J. Math. Anal. Appl., 123, 34–38 (1987) · Zbl 0612.39002
[22] Rehak, R.: Oscillation and nonoscillation criteria for second order linear difference equations. Fasc. Math., 31, 71–89 (2001) · Zbl 0999.39006
[23] Saker, S. H.: Kamenev–type oscillation criteria for forced Emden–Fowler Super–linear difference equations. Elect. J. Diff. Edns., 68, 1–9 (2002) · Zbl 1002.39013
[24] Saker, S. H.: New oscillation criteria for second–order nonlinear neutral difference equations. Appl. Math. Comp., 142, 99–111 (2003) · Zbl 1028.39003
[25] Saker, S. H.: Oscillation theorems of nonlinear difference equations of second order. Georgian Mathematical Journal, 10, 343–352 (2003) · Zbl 1042.39004
[26] Saker, S. H.: Oscillation of second–order perturbed nonlinear difference equations. Appl. Math. Comp., 144, 305–324 (2003) · Zbl 1035.39007
[27] Saker, S. H.: Oscillation of second–order nonlinear delay difference equations. Bulletin of the Korean Math. Soc., 40, 489–501 (2003) · Zbl 1035.39008
[28] Saker, S. H., Cheng, S. S.: Kamenev type oscillation criteria for nonlinear difference equations. Czechoslovak Math. J., 54, 955–967 (2004) · Zbl 1080.39502
[29] Szmanda, B.: Oscillation theorems for nonlinear second–order difference equations. J. Math. Anal. Appl., 79, 90–95 (1981) · Zbl 0455.39004
[30] Szmanda, B.: Characterization of oscillation of second order nonlinear difference equations. Bull. Polish. Acad. Sci. Math., 34, 133–141 (1986) · Zbl 0598.39004
[31] Zhang, B. G.: Oscillation and asymptotic behavior of second–order difference equations. J. Math. Anal. Appl., 173, 58–68 (1993) · Zbl 0780.39006
[32] Zhang, B. G., Zhou, Y.: Oscillation and nonoscillation for second–order linear difference equations. Comp. Math. Appl., 39, 1–7 (2000) · Zbl 0973.39007
[33] Zhang, B. G., Chen, G. D.: Oscillation of certain second order nonlinear difference equations. J. Math. Anal. Appl., 199, 872–841 (1996) · Zbl 0855.39011
[34] Zhang, B. G., Saker, S. H.: Kamenev–type oscillation criteria for nonlinear neutral delay difference equations. Indian J. Pure Appl. Math., 34, 1571–1584 (2003) · Zbl 1061.39009
[35] Saker, S. H.: Oscillation of nonlinear neutral difference equations. J. Pure Appl. Math., 1(4), 1–11 (2002) · Zbl 1009.39011
[36] Zhou, Y., Zhang, B. G.: Oscillation for difference equations with variable dalay. Dynamic Systems and Applications, 10, 133–144 (2001) · Zbl 1007.39004
[37] Zhou, Y.: Oscillations of neutral difference equations. Kyungpook Math. J., 39, 283–291 (1999) · Zbl 0954.39010
[38] Philos, Ch. G.: Oscillation theorems for linear differential equation of second order. Arch. Math., 53, 483–492 (1989) · Zbl 0661.34030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.