Shi, Kehan; Wen, Ying Nonlocal biharmonic evolution equations with Dirichlet and Navier boundary conditions. (English) Zbl 07599028 Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 560-579 (2023). Reviewer: Anar Assanova (Almaty) MSC: 45K05 45M05 35G16 PDF BibTeX XML Cite \textit{K. Shi} and \textit{Y. Wen}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 560--579 (2023; Zbl 07599028) Full Text: DOI OpenURL
Alt, Tobias; Schrader, Karl; Weickert, Joachim; Peter, Pascal; Augustin, Matthias Designing rotationally invariant neural networks from PDEs and variational methods. (English) Zbl 07576604 Res. Math. Sci. 9, No. 3, Paper No. 52, 23 p. (2022). MSC: 68-XX 92-XX PDF BibTeX XML Cite \textit{T. Alt} et al., Res. Math. Sci. 9, No. 3, Paper No. 52, 23 p. (2022; Zbl 07576604) Full Text: DOI arXiv OpenURL
Wen, Ying; Sun, Jiebao; Guo, Zhichang A new anisotropic fourth-order diffusion equation model based on image features for image denoising. (English) Zbl 1495.35097 Inverse Probl. Imaging 16, No. 4, 895-924 (2022). MSC: 35K35 35K59 68U10 94A08 PDF BibTeX XML Cite \textit{Y. Wen} et al., Inverse Probl. Imaging 16, No. 4, 895--924 (2022; Zbl 1495.35097) Full Text: DOI OpenURL
Afraites, Lekbir; Hadri, Aissam; Laghrib, Amine; Nachaoui, Mourad A non-convex denoising model for impulse and Gaussian noise mixture removing using bi-level parameter identification. (English) Zbl 1492.94017 Inverse Probl. Imaging 16, No. 4, 827-870 (2022). MSC: 94A08 65K10 90C26 35R11 68U10 PDF BibTeX XML Cite \textit{L. Afraites} et al., Inverse Probl. Imaging 16, No. 4, 827--870 (2022; Zbl 1492.94017) Full Text: DOI OpenURL
Li, Xinge; Wei, Suhua; Xu, Haibo; Chen, Chong Hybrid regularized cone-beam reconstruction for axially symmetric object tomography. (English) Zbl 07560255 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 1, 403-419 (2022). MSC: 65R32 65F22 65Z05 68U10 PDF BibTeX XML Cite \textit{X. Li} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 1, 403--419 (2022; Zbl 07560255) Full Text: DOI OpenURL
Cao, Kai Determination of the space-dependent source term in a fourth-order parabolic problem. (English) Zbl 1495.49021 Appl. Math. Optim. 86, No. 2, Paper No. 24, 40 p. (2022). MSC: 49N45 PDF BibTeX XML Cite \textit{K. Cao}, Appl. Math. Optim. 86, No. 2, Paper No. 24, 40 p. (2022; Zbl 1495.49021) Full Text: DOI OpenURL
Chen, Yong Robust anisotropic diffusion filter via robust spatial gradient estimation. (English) Zbl 1491.94005 Multidimensional Syst. Signal Process. 33, No. 2, 501-525 (2022). MSC: 94A08 PDF BibTeX XML Cite \textit{Y. Chen}, Multidimensional Syst. Signal Process. 33, No. 2, 501--525 (2022; Zbl 1491.94005) Full Text: DOI OpenURL
El Hakoume, A.; Afraites, L.; Laghrib, A. Well-posedness and simulation results of a coupled denoising PDE. (English) Zbl 1484.94006 Nonlinear Anal., Real World Appl. 65, Article ID 103499, 29 p. (2022). MSC: 94A08 68U10 35K57 49J45 49N90 PDF BibTeX XML Cite \textit{A. El Hakoume} et al., Nonlinear Anal., Real World Appl. 65, Article ID 103499, 29 p. (2022; Zbl 1484.94006) Full Text: DOI OpenURL
Shi, Baoli; Gu, Fang; Pang, Zhi-Feng; Zeng, Yuhua Remove the salt and pepper noise based on the high order total variation and the nuclear norm regularization. (English) Zbl 07484232 Appl. Math. Comput. 421, Article ID 126925, 17 p. (2022). MSC: 94Axx 65Kxx 90Cxx PDF BibTeX XML Cite \textit{B. Shi} et al., Appl. Math. Comput. 421, Article ID 126925, 17 p. (2022; Zbl 07484232) Full Text: DOI OpenURL
Li, Rong; Zheng, Bing A spatially adaptive hybrid total variation model for image restoration under Gaussian plus impulse noise. (English) Zbl 07483691 Appl. Math. Comput. 419, Article ID 126862, 22 p. (2022). MSC: 94Axx 68Uxx 90Cxx PDF BibTeX XML Cite \textit{R. Li} and \textit{B. Zheng}, Appl. Math. Comput. 419, Article ID 126862, 22 p. (2022; Zbl 07483691) Full Text: DOI OpenURL
Siddig, Abdelgader; Guo, Zhichang; Zhou, Zhenyu; Wu, Boying Entropy solutions for an adaptive fourth-order nonlinear degenerate problem for noise removal. (English) Zbl 07543310 AIMS Math. 6, No. 4, 3974-3995 (2021). MSC: 94A08 65J15 PDF BibTeX XML Cite \textit{A. Siddig} et al., AIMS Math. 6, No. 4, 3974--3995 (2021; Zbl 07543310) Full Text: DOI OpenURL
Dong, Gang; Wu, Boying A class of singular diffusion equations based on the convex-nonconvex variation model for noise removal. (English) Zbl 1486.94012 Bound. Value Probl. 2021, Paper No. 8, 39 p. (2021). MSC: 94A08 94A12 68U10 65K10 35K65 49J45 49N10 65D18 PDF BibTeX XML Cite \textit{G. Dong} and \textit{B. Wu}, Bound. Value Probl. 2021, Paper No. 8, 39 p. (2021; Zbl 1486.94012) Full Text: DOI OpenURL
Khoeiniha, N.; Hosseini, S. M.; Davoudi, R. Trainable fourth-order partial differential equations for image noise removal. (English) Zbl 1486.35139 Iran. J. Numer. Anal. Optim. 11, No. 2, 235-260 (2021). MSC: 35G31 68U10 90C90 PDF BibTeX XML Cite \textit{N. Khoeiniha} et al., Iran. J. Numer. Anal. Optim. 11, No. 2, 235--260 (2021; Zbl 1486.35139) Full Text: DOI OpenURL
Xu, Maoyuan; Xie, Xiaoping An efficient feature-preserving image denoising algorithm based on a spatial-fractional anisotropic diffusion equation. (English) Zbl 1481.94039 East Asian J. Appl. Math. 11, No. 4, 788-807 (2021). MSC: 94A08 35R11 PDF BibTeX XML Cite \textit{M. Xu} and \textit{X. Xie}, East Asian J. Appl. Math. 11, No. 4, 788--807 (2021; Zbl 1481.94039) Full Text: DOI OpenURL
Leach, P. G. L.; Paliathanasis, Andronikos Symmetry analysis for a fourth-order noise-reduction partial differential equation. (English) Zbl 07462249 Quaest. Math. 44, No. 11, 1541-1552 (2021). MSC: 47J35 35A09 35A25 PDF BibTeX XML Cite \textit{P. G. L. Leach} and \textit{A. Paliathanasis}, Quaest. Math. 44, No. 11, 1541--1552 (2021; Zbl 07462249) Full Text: DOI arXiv OpenURL
Zhang, Zhiguang; Liu, Qiang; Gao, Tianling A fast explicit diffusion algorithm of fractional order anisotropic diffusion for image denoising. (English) Zbl 07454693 Inverse Probl. Imaging 15, No. 6, 1451-1469 (2021). MSC: 68U10 35R11 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Inverse Probl. Imaging 15, No. 6, 1451--1469 (2021; Zbl 07454693) Full Text: DOI OpenURL
Alt, Tobias; Peter, Pascal; Weickert, Joachim; Schrader, Karl Translating numerical concepts for PDEs into neural architectures. (English) Zbl 07449739 Elmoataz, Abderrahim (ed.) et al., Scale space and variational methods in computer vision. 8th international conference, SSVM 2021, virtual event, May 16–20, 2021. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 12679, 294-306 (2021). MSC: 65M55 68T07 65M06 65B05 35B35 PDF BibTeX XML Cite \textit{T. Alt} et al., Lect. Notes Comput. Sci. 12679, 294--306 (2021; Zbl 07449739) Full Text: DOI arXiv OpenURL
Cao, Kai; Lesnic, Daniel; Ismailov, Mansur I. Determination of the time-dependent thermal grooving coefficient. (English) Zbl 1479.35942 J. Appl. Math. Comput. 65, No. 1-2, 199-221 (2021). MSC: 35R30 35K35 65M32 PDF BibTeX XML Cite \textit{K. Cao} et al., J. Appl. Math. Comput. 65, No. 1--2, 199--221 (2021; Zbl 1479.35942) Full Text: DOI Link OpenURL
Mohseni, Arman A new PDE-based resolution enhancement technique for the analysis of low SNR particle displacement images. (English) Zbl 1481.76171 Eur. J. Mech., B, Fluids 85, 289-311 (2021). MSC: 76M99 76-05 94A12 94A08 PDF BibTeX XML Cite \textit{A. Mohseni}, Eur. J. Mech., B, Fluids 85, 289--311 (2021; Zbl 1481.76171) Full Text: DOI OpenURL
Zhou, Bo; Yang, Yu-Fei A coupling model and ADMM algorithm based on TGV and shearlet regularization term for MRI reconstruction. (English) Zbl 1476.49003 Comput. Appl. Math. 40, No. 3, Paper No. 75, 19 p. (2021). MSC: 49J10 49M37 65K10 90C25 92C55 PDF BibTeX XML Cite \textit{B. Zhou} and \textit{Y.-F. Yang}, Comput. Appl. Math. 40, No. 3, Paper No. 75, 19 p. (2021; Zbl 1476.49003) Full Text: DOI OpenURL
Ran, Maohua; Lei, Xiaojuan A fast difference scheme for the variable coefficient time-fractional diffusion wave equations. (English) Zbl 1476.65189 Appl. Numer. Math. 167, 31-44 (2021). MSC: 65M06 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{M. Ran} and \textit{X. Lei}, Appl. Numer. Math. 167, 31--44 (2021; Zbl 1476.65189) Full Text: DOI OpenURL
Chen, Yong; He, Taoshun Image denoising via an adaptive weighted anisotropic diffusion. (English) Zbl 1458.94024 Multidimensional Syst. Signal Process. 32, No. 2, 651-669 (2021). MSC: 94A08 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{T. He}, Multidimensional Syst. Signal Process. 32, No. 2, 651--669 (2021; Zbl 1458.94024) Full Text: DOI OpenURL
Alkhidhr, Hanan; Jiang, Qingtang Correspondence between multiwavelet shrinkage and nonlinear diffusion. (English) Zbl 1458.94070 J. Comput. Appl. Math. 382, Article ID 113074, 16 p. (2021). MSC: 94A12 42C40 68T45 PDF BibTeX XML Cite \textit{H. Alkhidhr} and \textit{Q. Jiang}, J. Comput. Appl. Math. 382, Article ID 113074, 16 p. (2021; Zbl 1458.94070) Full Text: DOI OpenURL
Soumanou, V. M. Serge; Moumouni, Sounmaïla; Massou, Siaka; Essoun, Adébayo L. Application of the digital resolution of anisotropic and nonlinear diffusion equation to image processing. (English) Zbl 1484.35265 Adv. Differ. Equ. Control Process. 23, No. 2, 105-123 (2020). MSC: 35K57 35A24 35B65 35E05 68U10 PDF BibTeX XML Cite \textit{V. M. S. Soumanou} et al., Adv. Differ. Equ. Control Process. 23, No. 2, 105--123 (2020; Zbl 1484.35265) Full Text: DOI OpenURL
Zhou, Bo; Yang, Yu-Fei; Hu, Bo-Xia A second-order TV-based coupling model and an ADMM algorithm for MR image reconstruction. (English) Zbl 1461.92056 Int. J. Appl. Math. Comput. Sci. 30, No. 1, 113-122 (2020). MSC: 92C55 42C40 35Q92 PDF BibTeX XML Cite \textit{B. Zhou} et al., Int. J. Appl. Math. Comput. Sci. 30, No. 1, 113--122 (2020; Zbl 1461.92056) Full Text: DOI OpenURL
Yadeta, Dessalegn Mekonnen; Gizaw, Ademe Kebede; Mussa, Yesuf Obsie Approximate analytical solution of one-dimensional beam equations by using time-fractional reduced differential transform method. (English) Zbl 1499.65604 J. Appl. Math. 2020, Article ID 7627385, 13 p. (2020). MSC: 65M99 35K35 35Q74 35R11 65M12 65R20 PDF BibTeX XML Cite \textit{D. M. Yadeta} et al., J. Appl. Math. 2020, Article ID 7627385, 13 p. (2020; Zbl 1499.65604) Full Text: DOI OpenURL
Halim, Abdul; Kumar, B. V. Rathish A \(TV-L^2-H^{-1}\) PDE model for effective denoising. (English) Zbl 1452.35072 Comput. Math. Appl. 80, No. 10, 2176-2193 (2020). MSC: 35K15 35K59 65M12 68U10 94A08 PDF BibTeX XML Cite \textit{A. Halim} and \textit{B. V. R. Kumar}, Comput. Math. Appl. 80, No. 10, 2176--2193 (2020; Zbl 1452.35072) Full Text: DOI OpenURL
Majee, Sudeb; Jain, Subit K.; Ray, Rajendra K.; Majee, Ananta K. On the development of a coupled nonlinear telegraph-diffusion model for image restoration. (English) Zbl 1490.65157 Comput. Math. Appl. 80, No. 7, 1745-1766 (2020). MSC: 65M06 94A08 PDF BibTeX XML Cite \textit{S. Majee} et al., Comput. Math. Appl. 80, No. 7, 1745--1766 (2020; Zbl 1490.65157) Full Text: DOI arXiv OpenURL
Nchama, Gustavo Asumu Mboro; Mecias, Angela Leon; Ricard, Mariano Rodriguez Perona-Malik model with diffusion coefficient depending on fractional gradient via Caputo-Fabrizio derivative. (English) Zbl 1474.94023 Abstr. Appl. Anal. 2020, Article ID 7624829, 15 p. (2020). MSC: 94A08 35Q94 35R11 PDF BibTeX XML Cite \textit{G. A. M. Nchama} et al., Abstr. Appl. Anal. 2020, Article ID 7624829, 15 p. (2020; Zbl 1474.94023) Full Text: DOI OpenURL
Wang, Weina; Wu, Chunlin; Tai, Xue-Cheng A globally convergent algorithm for a constrained non-Lipschitz image restoration model. (English) Zbl 1455.94037 J. Sci. Comput. 83, No. 1, Paper No. 14, 29 p. (2020). MSC: 94A08 90C26 94A12 PDF BibTeX XML Cite \textit{W. Wang} et al., J. Sci. Comput. 83, No. 1, Paper No. 14, 29 p. (2020; Zbl 1455.94037) Full Text: DOI OpenURL
Choi, Jae Kyu; Dong, Bin; Zhang, Xiaoqun An edge driven wavelet frame model for image restoration. (English) Zbl 1454.94013 Appl. Comput. Harmon. Anal. 48, No. 3, 993-1029 (2020). MSC: 94A08 42C40 49J45 49N45 68U10 PDF BibTeX XML Cite \textit{J. K. Choi} et al., Appl. Comput. Harmon. Anal. 48, No. 3, 993--1029 (2020; Zbl 1454.94013) Full Text: DOI arXiv OpenURL
Liu, Changchun; Jin, Manli Some properties of solutions of a fourth-order parabolic equation for image processing. (English) Zbl 1436.35246 Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 333-353 (2020). MSC: 35K59 35A01 35B40 35G30 35K55 35Q94 94A08 PDF BibTeX XML Cite \textit{C. Liu} and \textit{M. Jin}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 333--353 (2020; Zbl 1436.35246) Full Text: DOI OpenURL
Laghrib, Amine; Chakib, Abdelkrim; Hadri, Aissam; Hakim, Abdelilah A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. (English) Zbl 1468.94020 Discrete Contin. Dyn. Syst., Ser. B 25, No. 1, 415-442 (2020). MSC: 94A08 65D18 PDF BibTeX XML Cite \textit{A. Laghrib} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 1, 415--442 (2020; Zbl 1468.94020) Full Text: DOI OpenURL
Dong, Fangfang; Ma, Qianting Single image blind deblurring based on the fractional-order differential. (English) Zbl 1442.94008 Comput. Math. Appl. 78, No. 6, 1960-1977 (2019). MSC: 94A08 65K10 PDF BibTeX XML Cite \textit{F. Dong} and \textit{Q. Ma}, Comput. Math. Appl. 78, No. 6, 1960--1977 (2019; Zbl 1442.94008) Full Text: DOI OpenURL
Bai, Lufeng A new nonconvex approach for image restoration with Gamma noise. (English) Zbl 1442.94003 Comput. Math. Appl. 77, No. 10, 2627-2639 (2019). MSC: 94A08 65K05 90C26 90C48 90C90 PDF BibTeX XML Cite \textit{L. Bai}, Comput. Math. Appl. 77, No. 10, 2627--2639 (2019; Zbl 1442.94003) Full Text: DOI OpenURL
Yang, Jing-Hua; Zhao, Xi-Le; Mei, Jin-Jin; Wang, Si; Ma, Tian-Hui; Huang, Ting-Zhu Total variation and high-order total variation adaptive model for restoring blurred images with Cauchy noise. (English) Zbl 1442.94015 Comput. Math. Appl. 77, No. 5, 1255-1272 (2019). MSC: 94A08 65R32 PDF BibTeX XML Cite \textit{J.-H. Yang} et al., Comput. Math. Appl. 77, No. 5, 1255--1272 (2019; Zbl 1442.94015) Full Text: DOI OpenURL
Barbu, Tudor; Miranville, Alain; Moroşanu, Costică A qualitative analysis and numerical simulations of a nonlinear second-order anisotropic diffusion problem with non-homogeneous Cauchy-Neumann boundary conditions. (English) Zbl 1428.35162 Appl. Math. Comput. 350, 170-180 (2019). MSC: 35K55 35A09 35B65 35K20 65M06 68U10 PDF BibTeX XML Cite \textit{T. Barbu} et al., Appl. Math. Comput. 350, 170--180 (2019; Zbl 1428.35162) Full Text: DOI OpenURL
Ran, Maohua; Luo, Taibai; Zhang, Li Unconditionally stable compact theta schemes for solving the linear and semi-linear fourth-order diffusion equations. (English) Zbl 1429.65198 Appl. Math. Comput. 342, 118-129 (2019). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{M. Ran} et al., Appl. Math. Comput. 342, 118--129 (2019; Zbl 1429.65198) Full Text: DOI OpenURL
Calder, Jeff; Yezzi, Anthony PDE acceleration: a convergence rate analysis and applications to obstacle problems. (English) Zbl 1427.65145 Res. Math. Sci. 6, No. 4, Paper No. 35, 30 p. (2019). MSC: 65M06 35Q93 65K10 49K20 65M12 35A15 35R15 65B99 PDF BibTeX XML Cite \textit{J. Calder} and \textit{A. Yezzi}, Res. Math. Sci. 6, No. 4, Paper No. 35, 30 p. (2019; Zbl 1427.65145) Full Text: DOI arXiv OpenURL
Perfilieva, Irina; Vlašánek, Pavel Total variation with nonlocal FT-Laplacian for patch-based inpainting. (English) Zbl 1415.94034 Soft Comput. 23, No. 6, 1833-1841 (2019). MSC: 94A08 94D05 PDF BibTeX XML Cite \textit{I. Perfilieva} and \textit{P. Vlašánek}, Soft Comput. 23, No. 6, 1833--1841 (2019; Zbl 1415.94034) Full Text: DOI OpenURL
Laghrib, Amine; Hadri, Aissam; Hakim, Abdelilah An edge preserving high-order PDE for multiframe image super-resolution. (English) Zbl 1455.94026 J. Franklin Inst. 356, No. 11, 5834-5857 (2019). MSC: 94A08 65M30 PDF BibTeX XML Cite \textit{A. Laghrib} et al., J. Franklin Inst. 356, No. 11, 5834--5857 (2019; Zbl 1455.94026) Full Text: DOI OpenURL
Liu, Yang Existence and blow-up of solutions to a parabolic equation with nonstandard growth conditions. (English) Zbl 1410.35059 Bull. Aust. Math. Soc. 99, No. 2, 242-249 (2019). Reviewer: Andrei Perjan (Chişinău) MSC: 35K35 35A01 35B44 PDF BibTeX XML Cite \textit{Y. Liu}, Bull. Aust. Math. Soc. 99, No. 2, 242--249 (2019; Zbl 1410.35059) Full Text: DOI OpenURL
Zhu, Jianguang; Li, Kai; Hao, Binbin Hybrid variational model based on alternating direction method for image restoration. (English) Zbl 1458.94068 Adv. Difference Equ. 2019, Paper No. 34, 16 p. (2019). MSC: 94A08 68U10 65K10 90C30 65T50 PDF BibTeX XML Cite \textit{J. Zhu} et al., Adv. Difference Equ. 2019, Paper No. 34, 16 p. (2019; Zbl 1458.94068) Full Text: DOI OpenURL
Adam, Tarmizi; Paramesran, Raveendran Image denoising using combined higher order non-convex total variation with overlapping group sparsity. (English) Zbl 1429.94009 Multidimensional Syst. Signal Process. 30, No. 1, 503-527 (2019). MSC: 94A08 90C26 90C90 PDF BibTeX XML Cite \textit{T. Adam} and \textit{R. Paramesran}, Multidimensional Syst. Signal Process. 30, No. 1, 503--527 (2019; Zbl 1429.94009) Full Text: DOI OpenURL
Liu, Zheng; Lai, Rongjie; Zhang, Huayan; Wu, Chunlin Triangulated surface denoising using high order regularization with dynamic weights. (English) Zbl 1405.65024 SIAM J. Sci. Comput. 41, No. 1, B1-B26 (2019). MSC: 65D18 65K10 68U10 94A08 PDF BibTeX XML Cite \textit{Z. Liu} et al., SIAM J. Sci. Comput. 41, No. 1, B1--B26 (2019; Zbl 1405.65024) Full Text: DOI arXiv OpenURL
Zhang, Yan-Shan; Zhang, Feng; Li, Bing-Zhao Image restoration method based on fractional variable order differential. (English) Zbl 1448.94041 Multidimensional Syst. Signal Process. 29, No. 3, 999-1024 (2018). MSC: 94A08 PDF BibTeX XML Cite \textit{Y.-S. Zhang} et al., Multidimensional Syst. Signal Process. 29, No. 3, 999--1024 (2018; Zbl 1448.94041) Full Text: DOI OpenURL
Tan, Lu; Liu, Wanquan; Pan, Zhenkuan Color image restoration and inpainting via multi-channel total curvature. (English) Zbl 1460.94014 Appl. Math. Modelling 61, 280-299 (2018). MSC: 94A08 94A40 65T50 42A38 PDF BibTeX XML Cite \textit{L. Tan} et al., Appl. Math. Modelling 61, 280--299 (2018; Zbl 1460.94014) Full Text: DOI OpenURL
Siddig, Abdelgader; Guo, Zhichang; Zhou, Zhenyu; Wu, Boying An image denoising model based on a fourth-order nonlinear partial differential equation. (English) Zbl 1435.94047 Comput. Math. Appl. 76, No. 5, 1056-1074 (2018). MSC: 94A08 35K35 35K59 PDF BibTeX XML Cite \textit{A. Siddig} et al., Comput. Math. Appl. 76, No. 5, 1056--1074 (2018; Zbl 1435.94047) Full Text: DOI OpenURL
Zhang, Jun; Liu, Haijiao; Wei, Zhihui Regularized variational dynamic stochastic resonance method for enhancement of dark and low-contrast image. (English) Zbl 1423.94012 Comput. Math. Appl. 76, No. 4, 774-787 (2018). MSC: 94A08 65C30 PDF BibTeX XML Cite \textit{J. Zhang} et al., Comput. Math. Appl. 76, No. 4, 774--787 (2018; Zbl 1423.94012) Full Text: DOI OpenURL
Bai, Jian; Feng, Xiang-Chu Image denoising using generalized anisotropic diffusion. (English) Zbl 1437.94004 J. Math. Imaging Vis. 60, No. 7, 994-1007 (2018). MSC: 94A08 PDF BibTeX XML Cite \textit{J. Bai} and \textit{X.-C. Feng}, J. Math. Imaging Vis. 60, No. 7, 994--1007 (2018; Zbl 1437.94004) Full Text: DOI OpenURL
Wang, Weina; Wu, Chunlin; Deng, Jiansong A general selective averaging method for piecewise constant signal and image processing. (English) Zbl 06931868 J. Sci. Comput. 76, No. 2, 1078-1104 (2018). MSC: 65-XX PDF BibTeX XML Cite \textit{W. Wang} et al., J. Sci. Comput. 76, No. 2, 1078--1104 (2018; Zbl 06931868) Full Text: DOI OpenURL
Li, Tong; Park, Jeungeun Stability of traveling waves of models for image processing with non-convex nonlinearity. (English) Zbl 1394.35034 Commun. Pure Appl. Anal. 17, No. 3, 959-985 (2018). MSC: 35B35 35B40 35B45 35C07 35L65 68U10 PDF BibTeX XML Cite \textit{T. Li} and \textit{J. Park}, Commun. Pure Appl. Anal. 17, No. 3, 959--985 (2018; Zbl 1394.35034) Full Text: DOI OpenURL
Ma, Tian-Hui; Huang, Ting-Zhu; Zhao, Xi-Le Spatially dependent regularization parameter selection for total generalized variation-based image denoising. (English) Zbl 1423.94009 Comput. Appl. Math. 37, No. 1, 277-296 (2018). MSC: 94A08 90C26 68U10 90C90 PDF BibTeX XML Cite \textit{T.-H. Ma} et al., Comput. Appl. Math. 37, No. 1, 277--296 (2018; Zbl 1423.94009) Full Text: DOI OpenURL
Wang, Si; Huang, Ting-Zhu; Zhao, Xi-Le; Mei, Jin-Jin; Huang, Jie Speckle noise removal in ultrasound images by first- and second-order total variation. (English) Zbl 1391.94105 Numer. Algorithms 78, No. 2, 513-533 (2018). Reviewer: Hang Lau (Montréal) MSC: 94A08 65K10 62H35 PDF BibTeX XML Cite \textit{S. Wang} et al., Numer. Algorithms 78, No. 2, 513--533 (2018; Zbl 1391.94105) Full Text: DOI OpenURL
Zhang, Xiaojuan; Ye, Wanzhou An adaptive fourth-order partial differential equation for image denoising. (English) Zbl 1436.94016 Comput. Math. Appl. 74, No. 10, 2529-2545 (2017). MSC: 94A08 35D30 35K25 35K59 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{W. Ye}, Comput. Math. Appl. 74, No. 10, 2529--2545 (2017; Zbl 1436.94016) Full Text: DOI OpenURL
Mbarki, Zouhair; Seddik, Hassene; Tebini, Sondes; Braiek, Ezzedine Ben A new rapid auto-adapting diffusion function for adaptive anisotropic image de-noising and sharply conserved edges. (English) Zbl 1436.94014 Comput. Math. Appl. 74, No. 8, 1751-1768 (2017). MSC: 94A08 PDF BibTeX XML Cite \textit{Z. Mbarki} et al., Comput. Math. Appl. 74, No. 8, 1751--1768 (2017; Zbl 1436.94014) Full Text: DOI OpenURL
Zadeh, Shekoufeh Gorgi; Didas, Stephan; Wintergerst, Maximilian W. M.; Schultz, Thomas Multi-scale anisotropic fourth-order diffusion improves ridge and valley localization. (English) Zbl 1426.68281 J. Math. Imaging Vis. 59, No. 2, 257-269 (2017). MSC: 68U10 35Q94 92C55 94A08 PDF BibTeX XML Cite \textit{S. G. Zadeh} et al., J. Math. Imaging Vis. 59, No. 2, 257--269 (2017; Zbl 1426.68281) Full Text: DOI arXiv OpenURL
Ma, Liyan; Zeng, Tieyong; Li, Gongyan Hybrid variational model for texture image restoration. (English) Zbl 1403.74024 East Asian J. Appl. Math. 7, No. 3, 629-642 (2017). MSC: 74E25 74S30 65J22 65K10 68U10 94A08 PDF BibTeX XML Cite \textit{L. Ma} et al., East Asian J. Appl. Math. 7, No. 3, 629--642 (2017; Zbl 1403.74024) Full Text: DOI OpenURL
Zhang, Xiaole; Shi, Yuying; Pang, Zhi-Feng; Zhu, Yonggui Fast algorithm for image denoising with different boundary conditions. (English) Zbl 1380.94041 J. Franklin Inst. 354, No. 11, 4595-4614 (2017). MSC: 94A08 68U10 65T50 PDF BibTeX XML Cite \textit{X. Zhang} et al., J. Franklin Inst. 354, No. 11, 4595--4614 (2017; Zbl 1380.94041) Full Text: DOI OpenURL
Jia, Zhi-Gang; Wei, Musheng A new TV-Stokes model for image deblurring and denoising with fast algorithms. (English) Zbl 06805216 J. Sci. Comput. 72, No. 2, 522-541 (2017). MSC: 65-XX PDF BibTeX XML Cite \textit{Z.-G. Jia} and \textit{M. Wei}, J. Sci. Comput. 72, No. 2, 522--541 (2017; Zbl 06805216) Full Text: DOI OpenURL
Bildhauer, M.; Fuchs, M.; Weickert, J. An alternative approach towards the higher order denoising of images. analytical aspects. (English) Zbl 1384.35019 J. Math. Sci., New York 224, No. 3, 414-441 (2017) and Zap. Nauchn. Semin. POMI 444, 47-88 (2016). Reviewer: Guy Jumarie (Montréal) MSC: 35J20 PDF BibTeX XML Cite \textit{M. Bildhauer} et al., J. Math. Sci., New York 224, No. 3, 414--441 (2017; Zbl 1384.35019) Full Text: DOI OpenURL
Wang, Lihe; Zhang, Chao; Zhou, Shulin Existence and uniqueness of weak solutions for a 2D low-curvature equation. (English) Zbl 1398.35107 J. Math. Anal. Appl. 452, No. 1, 297-311 (2017). MSC: 35K35 35D30 35K59 PDF BibTeX XML Cite \textit{L. Wang} et al., J. Math. Anal. Appl. 452, No. 1, 297--311 (2017; Zbl 1398.35107) Full Text: DOI OpenURL
Barbu, Tudor; Marinoschi, Gabriela Image denoising by a nonlinear control technique. (English) Zbl 1367.49016 Int. J. Control 90, No. 5, 1005-1017 (2017). MSC: 49K20 93C10 94A08 93C20 35J30 PDF BibTeX XML Cite \textit{T. Barbu} and \textit{G. Marinoschi}, Int. J. Control 90, No. 5, 1005--1017 (2017; Zbl 1367.49016) Full Text: DOI OpenURL
Jiang, Qingtang; Pounds, Dale K. Highly symmetric \(\sqrt{3}\)-refinement bi-frames for surface multiresolution processing. (English) Zbl 1367.65199 Appl. Numer. Math. 118, 1-18 (2017). MSC: 65T60 42C40 42C15 PDF BibTeX XML Cite \textit{Q. Jiang} and \textit{D. K. Pounds}, Appl. Numer. Math. 118, 1--18 (2017; Zbl 1367.65199) Full Text: DOI OpenURL
Dong, Bin; Jiang, Qingtang; Shen, Zuowei Image restoration: wavelet frame shrinkage, nonlinear evolution PDEs, and beyond. (English) Zbl 1378.35159 Multiscale Model. Simul. 15, No. 1, 606-660 (2017). MSC: 35K55 35A15 42C40 45Q05 65K10 68U10 35Q68 35Q99 94A08 PDF BibTeX XML Cite \textit{B. Dong} et al., Multiscale Model. Simul. 15, No. 1, 606--660 (2017; Zbl 1378.35159) Full Text: DOI OpenURL
Bihlo, Alexander; Popovych, Roman O. Group classification of linear evolution equations. (English) Zbl 1368.35013 J. Math. Anal. Appl. 448, No. 2, 982-1005 (2017). MSC: 35B06 PDF BibTeX XML Cite \textit{A. Bihlo} and \textit{R. O. Popovych}, J. Math. Anal. Appl. 448, No. 2, 982--1005 (2017; Zbl 1368.35013) Full Text: DOI arXiv OpenURL
Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad A new variational approach for restoring images with multiplicative noise. (English) Zbl 1443.94032 Comput. Math. Appl. 71, No. 10, 2034-2050 (2016). MSC: 94A08 65K10 PDF BibTeX XML Cite \textit{A. Ullah} et al., Comput. Math. Appl. 71, No. 10, 2034--2050 (2016; Zbl 1443.94032) Full Text: DOI OpenURL
Liu, Xinwu Augmented Lagrangian method for total generalized variation based Poissonian image restoration. (English) Zbl 1443.94024 Comput. Math. Appl. 71, No. 8, 1694-1705 (2016). MSC: 94A08 PDF BibTeX XML Cite \textit{X. Liu}, Comput. Math. Appl. 71, No. 8, 1694--1705 (2016; Zbl 1443.94024) Full Text: DOI OpenURL
Yang, Hao; Luo, Xueping; Chen, Leiting Solving adaptive image restoration problems via a modified projection algorithm. (English) Zbl 1400.94038 Math. Probl. Eng. 2016, Article ID 6132356, 11 p. (2016). MSC: 94A08 65K10 PDF BibTeX XML Cite \textit{H. Yang} et al., Math. Probl. Eng. 2016, Article ID 6132356, 11 p. (2016; Zbl 1400.94038) Full Text: DOI OpenURL
Kong, Lingju Positive radial solutions for quasilinear biharmonic equations. (English) Zbl 1368.35101 Comput. Math. Appl. 72, No. 12, 2878-2886 (2016). MSC: 35J40 35B07 35B09 PDF BibTeX XML Cite \textit{L. Kong}, Comput. Math. Appl. 72, No. 12, 2878--2886 (2016; Zbl 1368.35101) Full Text: DOI OpenURL
Mahipal, J.; Sharma, S. K.; Sundar, S. On a generalized \(5 \times 5\) stencil scheme for nonlinear diffusion filtering. (English) Zbl 1367.94070 Int. J. Adv. Eng. Sci. Appl. Math. 8, No. 3, 194-206 (2016). MSC: 94A08 65M06 35K20 35K59 PDF BibTeX XML Cite \textit{J. Mahipal} et al., Int. J. Adv. Eng. Sci. Appl. Math. 8, No. 3, 194--206 (2016; Zbl 1367.94070) Full Text: DOI OpenURL
Xu, Yi-Ping A combination model for image denoising. (English) Zbl 1416.94022 Acta Math. Appl. Sin., Engl. Ser. 32, No. 3, 781-792 (2016). MSC: 94A08 65M55 65K10 PDF BibTeX XML Cite \textit{Y.-P. Xu}, Acta Math. Appl. Sin., Engl. Ser. 32, No. 3, 781--792 (2016; Zbl 1416.94022) Full Text: DOI OpenURL
Lu, Wenqi; Duan, Jinming; Qiu, Zhaowen; Pan, Zhenkuan; Liu, Ryan Wen; Bai, Li Implementation of high-order variational models made easy for image processing. (English) Zbl 1388.94014 Math. Methods Appl. Sci. 39, No. 14, 4208-4233 (2016). MSC: 94A08 65N06 PDF BibTeX XML Cite \textit{W. Lu} et al., Math. Methods Appl. Sci. 39, No. 14, 4208--4233 (2016; Zbl 1388.94014) Full Text: DOI OpenURL
Liu, Pengfei; Xiao, Liang; Zhang, Jun A fast higher degree total variation minimization method for image restoration. (English) Zbl 1347.65049 Int. J. Comput. Math. 93, No. 8, 1383-1404 (2016). Reviewer: H. P. Dikshit (Bhopal) MSC: 65D18 65K10 94A08 PDF BibTeX XML Cite \textit{P. Liu} et al., Int. J. Comput. Math. 93, No. 8, 1383--1404 (2016; Zbl 1347.65049) Full Text: DOI OpenURL
Wang, Dehua; Gao, Jinghuai An improved noise removal model based on nonlinear fourth-order partial differential equations. (English) Zbl 1383.94004 Int. J. Comput. Math. 93, No. 6, 942-954 (2016). MSC: 94A08 49K10 58E30 68U10 PDF BibTeX XML Cite \textit{D. Wang} and \textit{J. Gao}, Int. J. Comput. Math. 93, No. 6, 942--954 (2016; Zbl 1383.94004) Full Text: DOI OpenURL
Brito-Loeza, Carlos; Chen, Ke; Uc-Cetina, Victor Image denoising using the Gaussian curvature of the image surface. (English) Zbl 1339.65027 Numer. Methods Partial Differ. Equations 32, No. 3, 1066-1089 (2016). MSC: 65D18 PDF BibTeX XML Cite \textit{C. Brito-Loeza} et al., Numer. Methods Partial Differ. Equations 32, No. 3, 1066--1089 (2016; Zbl 1339.65027) Full Text: DOI OpenURL
Duran, J.; Moeller, M.; Sbert, C.; Cremers, D. Collaborative total variation: a general framework for vectorial TV models. (English) Zbl 1381.94016 SIAM J. Imaging Sci. 9, No. 1, 116-151 (2016). MSC: 94A08 65F22 65K10 68U10 90C25 90C46 PDF BibTeX XML Cite \textit{J. Duran} et al., SIAM J. Imaging Sci. 9, No. 1, 116--151 (2016; Zbl 1381.94016) Full Text: DOI arXiv OpenURL
Dong, Fangfang; Chen, Yunmei A fractional-order derivative based variational framework for image denoising. (English) Zbl 1335.49048 Inverse Probl. Imaging 10, No. 1, 27-50 (2016). MSC: 49M29 49K20 65K10 94A08 68U10 26A33 PDF BibTeX XML Cite \textit{F. Dong} and \textit{Y. Chen}, Inverse Probl. Imaging 10, No. 1, 27--50 (2016; Zbl 1335.49048) Full Text: DOI OpenURL
Liu, Pengfei; Xiao, Liang Efficient multiplicative noise removal method using isotropic second order total variation. (English) Zbl 1443.94022 Comput. Math. Appl. 70, No. 8, 2029-2048 (2015). MSC: 94A08 92C55 PDF BibTeX XML Cite \textit{P. Liu} and \textit{L. Xiao}, Comput. Math. Appl. 70, No. 8, 2029--2048 (2015; Zbl 1443.94022) Full Text: DOI OpenURL
Liu, Xinwu Efficient algorithms for hybrid regularizers based image denoising and deblurring. (English) Zbl 1443.94023 Comput. Math. Appl. 69, No. 7, 675-687 (2015). MSC: 94A08 68U10 PDF BibTeX XML Cite \textit{X. Liu}, Comput. Math. Appl. 69, No. 7, 675--687 (2015; Zbl 1443.94023) Full Text: DOI OpenURL
Yin, Xuehui; Zhou, Shangbo Image structure-preserving denoising based on difference curvature driven fractional nonlinear diffusion. (English) Zbl 1395.94186 Math. Probl. Eng. 2015, Article ID 930984, 16 p. (2015). MSC: 94A12 26A33 35R11 PDF BibTeX XML Cite \textit{X. Yin} and \textit{S. Zhou}, Math. Probl. Eng. 2015, Article ID 930984, 16 p. (2015; Zbl 1395.94186) Full Text: DOI OpenURL
Cai, Xiaohao Variational image segmentation model coupled with image restoration achievements. (English) Zbl 1374.68674 Pattern Recognition 48, No. 6, 2029-2042 (2015). MSC: 68U10 94A08 PDF BibTeX XML Cite \textit{X. Cai}, Pattern Recognition 48, No. 6, 2029--2042 (2015; Zbl 1374.68674) Full Text: DOI arXiv OpenURL
Liu, Jun; Huang, Ting-Zhu; Selesnick, Ivan W.; Lv, Xiao-Guang; Chen, Po-Yu Image restoration using total variation with overlapping group sparsity. (English) Zbl 1360.94042 Inf. Sci. 295, 232-246 (2015). MSC: 94A08 PDF BibTeX XML Cite \textit{J. Liu} et al., Inf. Sci. 295, 232--246 (2015; Zbl 1360.94042) Full Text: DOI arXiv OpenURL
Chen, Dali; Chen, YangQuan; Xue, Dingyu Fractional-order total variation image denoising based on proximity algorithm. (English) Zbl 1338.68273 Appl. Math. Comput. 257, 537-545 (2015). MSC: 68U10 94A08 PDF BibTeX XML Cite \textit{D. Chen} et al., Appl. Math. Comput. 257, 537--545 (2015; Zbl 1338.68273) Full Text: DOI OpenURL
Yin, Aijun; Zhao, Lei; Gao, Bin; Woo, W. L. Fast partial differential equation de-noising filter for mechanical vibration signal. (English) Zbl 1334.35084 Math. Methods Appl. Sci. 38, No. 18, 4879-4890 (2015). MSC: 35K40 60G35 PDF BibTeX XML Cite \textit{A. Yin} et al., Math. Methods Appl. Sci. 38, No. 18, 4879--4890 (2015; Zbl 1334.35084) Full Text: DOI OpenURL
Barbu, Tudor Nonlinear PDE model for image restoration using second-order hyperbolic equations. (English) Zbl 1336.35246 Numer. Funct. Anal. Optim. 36, No. 11, 1375-1387 (2015). MSC: 35L72 68U10 94A08 35L20 65M06 PDF BibTeX XML Cite \textit{T. Barbu}, Numer. Funct. Anal. Optim. 36, No. 11, 1375--1387 (2015; Zbl 1336.35246) Full Text: DOI OpenURL
Shi, Baoli; Pang, Zhi-Feng; Wu, Jun Alternating split Bregman method for the bilaterally constrained image deblurring problem. (English) Zbl 1328.94015 Appl. Math. Comput. 250, 402-414 (2015). MSC: 94A08 65D18 65K10 68U10 PDF BibTeX XML Cite \textit{B. Shi} et al., Appl. Math. Comput. 250, 402--414 (2015; Zbl 1328.94015) Full Text: DOI OpenURL
Liu, X. Y.; Lai, C.-H.; Pericleous, K. A. A fourth-order partial differential equation denoising model with an adaptive relaxation method. (English) Zbl 1317.65138 Int. J. Comput. Math. 92, No. 3, 608-622 (2015). MSC: 65K05 65K10 49M37 49M25 68U10 PDF BibTeX XML Cite \textit{X. Y. Liu} et al., Int. J. Comput. Math. 92, No. 3, 608--622 (2015; Zbl 1317.65138) Full Text: DOI Link OpenURL
Zhao, Lei; Yin, Aijun High-order partial differential equation de-noising method for vibration signal. (English) Zbl 1310.35143 Math. Methods Appl. Sci. 38, No. 5, 937-947 (2015). MSC: 35K41 35Q99 60G35 94A12 65M06 PDF BibTeX XML Cite \textit{L. Zhao} and \textit{A. Yin}, Math. Methods Appl. Sci. 38, No. 5, 937--947 (2015; Zbl 1310.35143) Full Text: DOI OpenURL
Yang, Yu-Qian; Zhang, Cheng-Yi Kernel-based fourth-order diffusion for image noise removal. (English) Zbl 1323.94039 Int. J. Comput. Math. 92, No. 1, 181-191 (2015). MSC: 94A08 30C40 60G35 60J60 PDF BibTeX XML Cite \textit{Y.-Q. Yang} and \textit{C.-Y. Zhang}, Int. J. Comput. Math. 92, No. 1, 181--191 (2015; Zbl 1323.94039) Full Text: DOI OpenURL
Liu, Pengfei; Xiao, Liang; Xiu, Liancun Mixed higher order variational model for image recovery. (English) Zbl 1407.94018 Math. Probl. Eng. 2014, Article ID 924686, 15 p. (2014). MSC: 94A08 65J22 65K10 PDF BibTeX XML Cite \textit{P. Liu} et al., Math. Probl. Eng. 2014, Article ID 924686, 15 p. (2014; Zbl 1407.94018) Full Text: DOI OpenURL
Lu, Chengwu; Huang, Hua TV+TV regularization with nonconvex sparseness-inducing penalty for image restoration. (English) Zbl 1407.94019 Math. Probl. Eng. 2014, Article ID 790547, 15 p. (2014). MSC: 94A08 65K10 PDF BibTeX XML Cite \textit{C. Lu} and \textit{H. Huang}, Math. Probl. Eng. 2014, Article ID 790547, 15 p. (2014; Zbl 1407.94019) Full Text: DOI OpenURL
Yang, Yu-Qian; Zhang, Cheng-Yi Kernel based telegraph-diffusion equation for image noise removal. (English) Zbl 1407.94030 Math. Probl. Eng. 2014, Article ID 283751, 10 p. (2014). MSC: 94A08 68U10 35Q94 PDF BibTeX XML Cite \textit{Y.-Q. Yang} and \textit{C.-Y. Zhang}, Math. Probl. Eng. 2014, Article ID 283751, 10 p. (2014; Zbl 1407.94030) Full Text: DOI OpenURL
Zhang, Wei; Li, Jiaojie; Yang, Yupu A class of nonlocal tensor telegraph-diffusion equations applied to coherence enhancement. (English) Zbl 1353.35192 Comput. Math. Appl. 67, No. 8, 1461-1473 (2014). MSC: 35L20 35R09 35D30 PDF BibTeX XML Cite \textit{W. Zhang} et al., Comput. Math. Appl. 67, No. 8, 1461--1473 (2014; Zbl 1353.35192) Full Text: DOI OpenURL
Pu, Yifei; Siarry, Patrick; Zhou, Jiliu; Liu, Yiguang; Zhang, Ni; Huang, Guo; Liu, Yizhi Fractional partial differential equation denoising models for texture image. (English) Zbl 1343.94012 Sci. China, Inf. Sci. 57, No. 7, Article ID 072115, 19 p. (2014). MSC: 94A08 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Pu} et al., Sci. China, Inf. Sci. 57, No. 7, Article ID 072115, 19 p. (2014; Zbl 1343.94012) Full Text: DOI Link OpenURL
Wu, Tingting; Yang, Yufei; Jing, Huichao Two-step methods for image zooming using duality strategies. (English) Zbl 1303.65007 Numer. Algebra Control Optim. 4, No. 3, 209-225 (2014). MSC: 65D18 65K10 94A08 PDF BibTeX XML Cite \textit{T. Wu} et al., Numer. Algebra Control Optim. 4, No. 3, 209--225 (2014; Zbl 1303.65007) Full Text: DOI OpenURL
Pu, Yi-Fei; Siarry, Patrick; Zhou, Ji-Liu; Zhang, Ni A fractional partial differential equation based multiscale denoising model for texture image. (English) Zbl 1301.35203 Math. Methods Appl. Sci. 37, No. 12, 1784-1806 (2014). MSC: 35R11 94A08 26A33 68U10 PDF BibTeX XML Cite \textit{Y.-F. Pu} et al., Math. Methods Appl. Sci. 37, No. 12, 1784--1806 (2014; Zbl 1301.35203) Full Text: DOI OpenURL
Ghanbari, Behzad; Rada, Lavdie; Chen, Ke A restarted iterative homotopy analysis method for two nonlinear models from image processing. (English) Zbl 06330234 Int. J. Comput. Math. 91, No. 3, 661-687 (2014). MSC: 62H35 65N22 68U10 35A15 65C20 74G65 74G75 35C10 PDF BibTeX XML Cite \textit{B. Ghanbari} et al., Int. J. Comput. Math. 91, No. 3, 661--687 (2014; Zbl 06330234) Full Text: DOI OpenURL
Min, Lihua; Yang, Xiaoping; Ye, Dong Well-posedness for a fourth order nonlinear equation related to image processing. (English) Zbl 1302.35208 Nonlinear Anal., Real World Appl. 17, 192-202 (2014). MSC: 35K55 68U10 PDF BibTeX XML Cite \textit{L. Min} et al., Nonlinear Anal., Real World Appl. 17, 192--202 (2014; Zbl 1302.35208) Full Text: DOI HAL OpenURL
Prasath, V. B. Surya; Vorotnikov, D. On a system of adaptive coupled PDEs for image restoration. (English) Zbl 1295.35254 J. Math. Imaging Vis. 48, No. 1, 35-52 (2014). MSC: 35K51 94A08 35K59 PDF BibTeX XML Cite \textit{V. B. S. Prasath} and \textit{D. Vorotnikov}, J. Math. Imaging Vis. 48, No. 1, 35--52 (2014; Zbl 1295.35254) Full Text: DOI arXiv OpenURL