×

Variational image segmentation model coupled with image restoration achievements. (English) Zbl 1374.68674

Summary: Image segmentation and image restoration are two important topics in image processing with a number of important applications. In this paper, we propose a new multiphase segmentation model by combining image restoration and image segmentation models. Utilizing aspects of image restoration, the proposed segmentation model can effectively and robustly tackle images with a high level of noise or blurriness, missing pixels or vector values. In particular, one of the most important segmentation models, the piecewise constant Mumford-Shah model, can be extended easily in this way to segment gray and vector-valued images corrupted, for example, by noise, blur or information loss after coupling a new data fidelity term which borrowed from the field of image restoration. It can be solved efficiently using the alternating minimization algorithm, and we prove the convergence of this algorithm with three variables under mild conditions. Experiments on many synthetic and real-world images demonstrate that our method gives better segmentation results in terms of quality and quantity in comparison to other state-of-the-art segmentation models, especially for blurry images and those with information loss.

MSC:

68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aubert, G.; Aujol, J., A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68, January (4), 925-946 (2008) · Zbl 1151.68713
[3] Bezdek, J.; Ehrlich, R.; Full, W., FCMThe fuzzy \(c\)-means clustering algorithm, Comput. Geosci., 10, 2-3, 191-203 (1984)
[4] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, January (1), 1-122 (2010) · Zbl 1229.90122
[5] Cai, J.; Chan, R. H.; Shen, Z., A framelet-based image inpainting algorithm, Appl. Comput. Harmon. Anal., 24, March (2), 131-149 (2008) · Zbl 1135.68056
[6] Cai, X.; Chan, R.; Zeng, T., A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding, SIAM J. Imaging Sci., 6, February (1), 368-390 (2013) · Zbl 1283.52011
[8] Chambolle, A., Image segmentation by variational methodsMumford and Shah functional and the discrete approximations, SIAM J. Appl. Math., 55, 3, 827-863 (1995) · Zbl 0830.49015
[9] Chambolle, A., Finite differences discretization of the Mumford-Shah functional, RAIRO Math. Model. Numer. Anal., 33, 2, 261-288 (1999) · Zbl 0947.65076
[10] Chambolle, A.; Pock, T., A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40, May (1), 120-145 (2011) · Zbl 1255.68217
[11] Chan, R.; Hu, C.; Nikolova, M., An iterative procedure for removing random-valued impulse noise, IEEE Signal Process. Lett., 11, December (12), 921-924 (2004)
[12] Chan, R.; Hu, C.; Nikolova, M., Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization, IEEE Trans. Image Process., 14, October (10), 1479-1485 (2005)
[13] Chan, T.; Esedoglu, S.; Nikolova, M., Algorithms for finding global minimizers of image segmentation and denoising models, SIAM J. Appl. Math., 66, September (5), 1632-1648 (2006) · Zbl 1117.94002
[14] Chan, T.; Marquina, A.; Mulet, P., High-order total variation-based image restoration, SIAM J. Sci. Comput., 22, 2, 503-516 (2000) · Zbl 0968.68175
[15] Chan, T.; Shen, J., Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods (2005), SIAM, Philadelphia · Zbl 1095.68127
[16] Chan, T.; Vese, L. A., Active contours without edges, IEEE Trans. Image Process., 10, February (2), 266-277 (2001) · Zbl 1039.68779
[17] Csiszár, I., Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems, Ann. Stat., 19, 4, 2032-2066 (1991) · Zbl 0753.62003
[19] Ekeland, I.; Temam, R., Convex Analysis and Variational Problems (1999), SIAM: SIAM Philadelphia · Zbl 0939.49002
[20] Fleming, W.; Rishel, W.; Rishel, R., An integral formula for total gradient variation, Arch. Math., 11, 1, 218-222 (1960) · Zbl 0094.26301
[21] Giusti, E., Minimal surfaces and functions of bounded variation, Monogr. Math., 80 (1984) · Zbl 0545.49018
[22] Gobbino, M., Finite difference approximation of the Mumford-Shah functional, Commun. Pure Appl. Math., 51, February (2), 197-228 (1998) · Zbl 0888.49013
[23] Goldstein, T.; Osher, S., The split Bregman algorithm for L1 regularized problems, SIAM J. Imaging Sci., 2, April (2), 323-343 (2009) · Zbl 1177.65088
[24] He, Y.; Shafei, B.; Hussaini, M. Y.; Ma, J.; Steidl, G., A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data, Pattern Recognit., 45, September (9), 3436-3471 (2012) · Zbl 1242.68360
[25] Huang, Y.; Ng, M.; Wen, Y., Fast image restoration methods for impulse and Gaussian noise removal, IEEE Signal Process. Lett., 16, Jun (6), 457-460 (2009)
[26] Koepfler, G.; Lopez, C.; Morel, J., A multiscale algorithm for image segmentation by variational approach, SIAM J. Numer. Anal., 31, February (1), 282-299 (1994) · Zbl 0804.68053
[27] Le, T.; Chartrand, R.; Asaki, T., A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vis., 27, April (3), 257-263 (2007)
[28] Li, F.; Ng, M.; Zeng, T.; Shen, C., A multiphase image segmentation method based on fuzzy region competition, SIAM J. Imaging Sci., 3, July (3), 277-299 (2010) · Zbl 1200.68267
[29] Lysaker, M.; Lundervold, A.; Tai, X., Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12, December (12), 1579-1590 (2003) · Zbl 1286.94020
[30] Mumford, D.; Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pur. Appl. Math., 42, July (5), 577-685 (1989) · Zbl 0691.49036
[31] Nikolova, M., A variational approach to remove outliers and impulse noise, J. Math. Imaging Vis., 20, January (1-2), 99-120 (2004) · Zbl 1366.94065
[32] Paul, G.; Cardinale, J.; Sbalzarini, I., Coupling image restoration and segmentationa generalized linear model/Bregman perspective, Int. J. Comput. Vis., 104, August (1), 69-93 (2013) · Zbl 1270.68373
[34] Potts, R., Some generalized order-disorder transformations, Proc. Camb. Philos. Soc., 48, 106-109 (1952) · Zbl 0048.45601
[37] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, November (1-4), 259-268 (1992) · Zbl 0780.49028
[38] Setzer, S.; Steidl, G., Variational Methods with Higher Order Derivatives in Image Processing, Approximation XII (2008), Nashboro Press: Nashboro Press Brentwood, pp. 360-386 · Zbl 1175.68520
[39] Setzer, S.; Steidl, G.; Teuber, T., Deblurring Poissonian images by split Bregman techniques, J. Vis. Commun. Image Represent., 21, April (3), 193-199 (2010)
[40] Steidl, G.; Teuber, T., Removing multiplicative noise by Douglas-Rachford splitting methods, J. Math. Imaging Vis., 36, February (2), 168-184 (2010) · Zbl 1287.94016
[41] Steidl, G.; Weickert, J.; Brox, T.; Mrazek, P.; Welk, M., On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs, SIAM J. Numer. Anal., 42, May (2), 686-713 (2004) · Zbl 1083.94001
[42] Tikhonov, A., Regularization of ill-posed problems, Dokl. Akad. Nauk SSSR 153, 1, 49-52 (1963)
[43] Vairy, M.; Venkatesh, Y., Deblurring Gaussian blur using a wavelet array transform, Pattern Recogn., 28, 7, 965-976 (1995)
[44] Vese, L.; Chan, T., A multiphase level set framework for image segmentation using the Mumford and Shah model, Int. J. Comput. Vis., 50, December (3), 271-293 (2002) · Zbl 1012.68782
[45] You, Y.; Kaveh, M., Fourth-order partial differential equation for noise removal, IEEE Trans. Image Process., 9, October (10), 1723-1730 (2000) · Zbl 0962.94011
[47] Yun, S.; Woo, H., Linearized proximal alternating minimization algorithm for motion deblurring by nonlocal regularization, Pattern Recogn., 44, 6, 1312-1326 (2011) · Zbl 1209.68604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.