Lopes, André da Rocha; Límaco, Juan Local null controllability for a parabolic equation with local and nonlocal nonlinearities in moving domains. (English) Zbl 07524387 Evol. Equ. Control Theory 11, No. 3, 749-779 (2022). MSC: 35R37 35K20 35K58 35K65 35R09 93B05 93C20 PDF BibTeX XML Cite \textit{A. da R. Lopes} and \textit{J. Límaco}, Evol. Equ. Control Theory 11, No. 3, 749--779 (2022; Zbl 07524387) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Caraballo, Tomás; Van, Phan Thi Khanh; Au, Vo Van On a terminal value problem for parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms. (English) Zbl 07474642 Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106248, 29 p. (2022). MSC: 35R25 35R30 35K51 35K57 35R09 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106248, 29 p. (2022; Zbl 07474642) Full Text: DOI OpenURL
Luc, Nguyen Hoang; Kumar, Devendra; Long, Le Dinh; Van, Ho Thi Kim Final value problem for parabolic equation with fractional Laplacian and Kirchhoff’s term. (English) Zbl 1472.35437 J. Funct. Spaces 2021, Article ID 7238678, 12 p. (2021). MSC: 35R11 35B65 35K59 PDF BibTeX XML Cite \textit{N. H. Luc} et al., J. Funct. Spaces 2021, Article ID 7238678, 12 p. (2021; Zbl 1472.35437) Full Text: DOI OpenURL
Zhang, Chao; Zhang, Xia Some further results on the nonlocal \(p\)-Laplacian type problems. (English) Zbl 1466.35234 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 3, 953-970 (2021). MSC: 35J92 35K61 35A01 PDF BibTeX XML Cite \textit{C. Zhang} and \textit{X. Zhang}, Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 3, 953--970 (2021; Zbl 1466.35234) Full Text: DOI OpenURL
Antontsev, Stanislav; Shmarev, Sergey On a class of nonlocal evolution equations with the \(p [ u ( x , t ) ]\)-Laplace operator. (English) Zbl 1451.35080 Nonlinear Anal., Real World Appl. 56, Article ID 103165, 23 p. (2020). MSC: 35K92 35K20 35K67 35D35 PDF BibTeX XML Cite \textit{S. Antontsev} and \textit{S. Shmarev}, Nonlinear Anal., Real World Appl. 56, Article ID 103165, 23 p. (2020; Zbl 1451.35080) Full Text: DOI OpenURL
Sert, Uğur; Öztürk, Eylem Existence and behavior results for a nonlocal nonlinear parabolic equation with variable exponent. (English) Zbl 1450.35154 Kyungpook Math. J. 60, No. 1, 145-161 (2020). MSC: 35K92 35D30 35K20 35K65 35R09 PDF BibTeX XML Cite \textit{U. Sert} and \textit{E. Öztürk}, Kyungpook Math. J. 60, No. 1, 145--161 (2020; Zbl 1450.35154) Full Text: DOI arXiv OpenURL
Tuan, Nguyen Huy; Thanh, Bui Le Trong; Kirane, Mokhtar; Van, Phan Thi Khanh Regularization and error estimate for an initial inverse nonlocal diffusion problem. (English) Zbl 1445.35336 Comput. Math. Appl. 79, No. 12, 3331-3352 (2020). MSC: 35R30 35R25 35K51 47J06 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Comput. Math. Appl. 79, No. 12, 3331--3352 (2020; Zbl 1445.35336) Full Text: DOI OpenURL
Antontsev, Stanislav; Shmarev, Sergey Nonlocal evolution equations with \(p[u(x, t)]\)-Laplacian and lower-order terms. (English) Zbl 1443.35078 J. Elliptic Parabol. Equ. 6, No. 1, 211-237 (2020). MSC: 35K59 35K67 35M99 35K55 35D35 PDF BibTeX XML Cite \textit{S. Antontsev} and \textit{S. Shmarev}, J. Elliptic Parabol. Equ. 6, No. 1, 211--237 (2020; Zbl 1443.35078) Full Text: DOI OpenURL
Atlas, Abdelghafour; Bendahmane, Mostafa; Karami, Fahd; Meskine, Driss; Zagour, Mohamed Kinetic-fluid derivation and mathematical analysis of a nonlocal cross-diffusion-fluid system. (English) Zbl 1481.76201 Appl. Math. Modelling 82, 379-408 (2020). MSC: 76R50 35Q35 65M60 PDF BibTeX XML Cite \textit{A. Atlas} et al., Appl. Math. Modelling 82, 379--408 (2020; Zbl 1481.76201) Full Text: DOI OpenURL
Sert, Uğur; Shmarev, Sergey On a degenerate nonlocal parabolic equation with variable source. (English) Zbl 1429.35140 J. Math. Anal. Appl. 484, No. 1, Article ID 123695, 30 p. (2020). MSC: 35K65 35K59 35B40 35K20 35K55 PDF BibTeX XML Cite \textit{U. Sert} and \textit{S. Shmarev}, J. Math. Anal. Appl. 484, No. 1, Article ID 123695, 30 p. (2020; Zbl 1429.35140) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Nam, Danh Hua Quoc; Vo, Thi Minh Nhat On a backward problem for the Kirchhoff’s model of parabolic type. (English) Zbl 1442.35538 Comput. Math. Appl. 77, No. 1, 15-33 (2019). MSC: 35R25 35K20 35K55 35R30 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Comput. Math. Appl. 77, No. 1, 15--33 (2019; Zbl 1442.35538) Full Text: DOI OpenURL
Chipot, M.; de Oliveira, H. B. Some results on the \(p(u)\)-Laplacian problem. (English) Zbl 1430.35106 Math. Ann. 375, No. 1-2, 283-306 (2019); correction ibid. 375, No. 1-2, 307-313 (2019). Reviewer: Mariana Vega Smit (Bellingham) MSC: 35J92 35J40 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{M. Chipot} and \textit{H. B. de Oliveira}, Math. Ann. 375, No. 1--2, 283--306 (2019; Zbl 1430.35106) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Lesnic, Daniel; Van, Phan Thi Khanh Identification of the initial population of a nonlinear predator-prey system backwards in time. (English) Zbl 1447.35391 J. Math. Anal. Appl. 479, No. 1, 1195-1225 (2019). MSC: 35R30 35R25 35K57 35K51 35R09 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., J. Math. Anal. Appl. 479, No. 1, 1195--1225 (2019; Zbl 1447.35391) Full Text: DOI Link OpenURL
Peng, Xiaoming; Shang, Yadong; Zheng, Xiaoxiao Pullback attractors of nonautonomous nonclassical diffusion equations with nonlocal diffusion. (English) Zbl 1403.35057 Z. Angew. Math. Phys. 69, No. 4, Paper No. 110, 14 p. (2018). MSC: 35B41 35B40 35K55 PDF BibTeX XML Cite \textit{X. Peng} et al., Z. Angew. Math. Phys. 69, No. 4, Paper No. 110, 14 p. (2018; Zbl 1403.35057) Full Text: DOI OpenURL
Ivanova, A. S.; Pavlova, M. F. On unique solvability of one nonlinear nonlocal with respect to the solution gradient nonstationary problem. (English. Russian original) Zbl 06763572 Russ. Math. 61, No. 3, 67-71 (2017); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2017, No. 3, 78-83 (2017). MSC: 35-XX 47-XX PDF BibTeX XML Cite \textit{A. S. Ivanova} and \textit{M. F. Pavlova}, Russ. Math. 61, No. 3, 67--71 (2017; Zbl 06763572); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2017, No. 3, 78--83 (2017) Full Text: DOI OpenURL
Ferreira, Jorge; Borges de Oliveira, Hermenegildo Parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms. (English) Zbl 1357.35186 Discrete Contin. Dyn. Syst. 37, No. 5, 2431-2453 (2017). MSC: 35K57 35D30 35D35 35B44 35B35 PDF BibTeX XML Cite \textit{J. Ferreira} and \textit{H. Borges de Oliveira}, Discrete Contin. Dyn. Syst. 37, No. 5, 2431--2453 (2017; Zbl 1357.35186) Full Text: DOI OpenURL
Glazyrina, O. V.; Pavlova, M. F. Study of the convergence of the finite-element method for parabolic equations with a nonlinear nonlocal spatial operator. (English. Russian original) Zbl 1338.65224 Differ. Equ. 51, No. 7, 872-885 (2015); translation from Differ. Uravn. 51, No. 7, 876-889 (2015). Reviewer: Petr Sváček (Praha) MSC: 65M20 65M60 65M12 35K55 PDF BibTeX XML Cite \textit{O. V. Glazyrina} and \textit{M. F. Pavlova}, Differ. Equ. 51, No. 7, 872--885 (2015; Zbl 1338.65224); translation from Differ. Uravn. 51, No. 7, 876--889 (2015) Full Text: DOI OpenURL
Caraballo, Tomás; Herrera-Cobos, Marta; Marín-Rubio, Pedro Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms. (English) Zbl 1325.35087 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 121, 3-18 (2015). MSC: 35K55 35B40 35B41 35B65 35Q92 37L30 PDF BibTeX XML Cite \textit{T. Caraballo} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 121, 3--18 (2015; Zbl 1325.35087) Full Text: DOI Link OpenURL
Glazyrina, O. V.; Pavlova, M. F. On the solvability of an evolution variational inequality with a nonlocal space operator. (English. Russian original) Zbl 1304.49017 Differ. Equ. 50, No. 7, 873-887 (2014); translation from Differ. Uravn. 50, No. 7, 884-898 (2014). MSC: 49J40 65K15 PDF BibTeX XML Cite \textit{O. V. Glazyrina} and \textit{M. F. Pavlova}, Differ. Equ. 50, No. 7, 873--887 (2014; Zbl 1304.49017); translation from Differ. Uravn. 50, No. 7, 884--898 (2014) Full Text: DOI OpenURL
Glazyrina, O. V.; Pavlova, M. F. The unique solvability of a certain nonlocal nonlinear problem with a spatial operator strongly monotone with respect to the gradient. (English. Russian original) Zbl 1255.35010 Russ. Math. 56, No. 3, 83-86 (2012); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2012, No. 3, 92-95 (2012). MSC: 35A02 35K59 35K20 35K65 47H05 PDF BibTeX XML Cite \textit{O. V. Glazyrina} and \textit{M. F. Pavlova}, Russ. Math. 56, No. 3, 83--86 (2012; Zbl 1255.35010); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2012, No. 3, 92--95 (2012) Full Text: DOI OpenURL
Fernández-Cara, Enrique; Limaco, Juan; de Menezes, Silvano B. Null controllability for a parabolic equation with nonlocal nonlinearities. (English) Zbl 1250.93031 Syst. Control Lett. 61, No. 1, 107-111 (2012). MSC: 93B05 93C20 93C10 PDF BibTeX XML Cite \textit{E. Fernández-Cara} et al., Syst. Control Lett. 61, No. 1, 107--111 (2012; Zbl 1250.93031) Full Text: DOI OpenURL
Pavlova, M. F. On the solvability of nonlocal nonstationary problems with double degeneration. (English. Russian original) Zbl 1254.35058 Differ. Equ. 47, No. 8, 1161-1175 (2011); translation from Differ. Uravn. 47, No. 8, 1148-1162 (2011). MSC: 35G31 35R09 PDF BibTeX XML Cite \textit{M. F. Pavlova}, Differ. Equ. 47, No. 8, 1161--1175 (2011; Zbl 1254.35058); translation from Differ. Uravn. 47, No. 8, 1148--1162 (2011) Full Text: DOI OpenURL
Simon, László On nonlinear systems consisting of different types of differential equations. (English) Zbl 1174.35098 Period. Math. Hung. 56, No. 1, 143-156 (2008). Reviewer: Ruxandra Stavre (Bucuresti) MSC: 35Q35 35R10 PDF BibTeX XML Cite \textit{L. Simon}, Period. Math. Hung. 56, No. 1, 143--156 (2008; Zbl 1174.35098) Full Text: DOI OpenURL
Zhi, Yuanhong; Mu, Chunlai; Yuan, Daming The quenching phenomenon of a nonlocal semilinear heat equation with a weak singularity. (English) Zbl 1149.35374 Appl. Math. Comput. 201, No. 1-2, 701-709 (2008). MSC: 35K60 45K05 35B05 35B40 PDF BibTeX XML Cite \textit{Y. Zhi} et al., Appl. Math. Comput. 201, No. 1--2, 701--709 (2008; Zbl 1149.35374) Full Text: DOI OpenURL
Chipot, M.; Valente, V.; Vergara Caffarelli, G. Remarks on a nonlocal problem involving the Dirichlet energy. (English) Zbl 1117.35034 Rend. Semin. Mat. Univ. Padova 110, 199-220 (2003). Reviewer: Adrian Carabineanu (Bucureşti) MSC: 35K55 35K20 35J20 35R10 35B40 PDF BibTeX XML Cite \textit{M. Chipot} et al., Rend. Semin. Mat. Univ. Padova 110, 199--220 (2003; Zbl 1117.35034) Full Text: EuDML OpenURL
Ackleh, Azmy S.; Ke, Lan Existence-uniqueness and long time behavior for a class of nonlocal nonlinear parabolic evolution equations. (English) Zbl 0959.35086 Proc. Am. Math. Soc. 128, No. 12, 3483-3492 (2000). Reviewer: M.Fila (Bratislava) MSC: 35K55 35B40 PDF BibTeX XML Cite \textit{A. S. Ackleh} and \textit{L. Ke}, Proc. Am. Math. Soc. 128, No. 12, 3483--3492 (2000; Zbl 0959.35086) Full Text: DOI OpenURL