×

On the \(S^{1}\times S^{2}\) HOMFLY-PT invariant and Legendrian links. (English) Zbl 1281.57007

The authors study the \(S^1\times S^2\) HOMFLY-PT invariant, which was first introduced by Gilmer and Zhong. They provide a practical result to compute the HOMFLY-PT invariant of links in \(S^1 \times S^2\).
Let \(S(S^1 \times D^2)\) denote the HOMFLY-PT skein module of \(S^1 \times D^2\) and \(\mathbb Q(a, s)\) the field of rational functions. The main theorem relates the HOMFLY-PT invariant \[ F: S(S^1 \times D^2) \to \mathbb Q(a, s) \] and the two-graded ruling polynomial. The latter, defined by Chekanov and Pushkar, is an invariant of Legendrian links in \(S^1 \times \mathbb R^2\) with respect to the standard tight contact structure given as \(\ker(dz-ydx)\) where the \(x\)-coordinate is \(S^1\)-valued. An important fact for the main theorem is that the contact framing of a Legendrian link agrees with the blackboard framing of its projection to the \(xy\)-annulus.
Let \(\{ A_\lambda A_{-\mu}\}\) be the Turaev’s geometric basis of the skein module \(S(S^1 \times D^2)\), where \(\lambda, \mu\) are partitions. Putting \(z=s-s^{-1}\) any link in \(S^2\times D^2\) is a \(\mathbb Z[a^{\pm 1}, z^{\pm 1}]\)-linear combination of the Turaev-basis up to the HOMFLY-PT skein relations.
With respect to the Turaev-basis, the main theorem states that \[ F(A_\lambda A_{-\mu}) = R^2_{A_\lambda A_{-\mu}}(z) \] where \(R^2\) denotes the \(2\)-graded ruling polynomial.
Since the ruling polynomial \(R^2\) is a Laurent polynomial in \(z\), as a corollary of the main theorem the authors prove that the HOMFLY-PT polynomial is a Laurent polynomial in \(a\) and \(z\).
Another corollary of the main theorem and a result of Chmutov and Goryunov is an inequality for a null-homologous Legendrian link \(L \subset S^1 \times S^2\) \[ \text{tb}(L) + | \text{rot}(L) | \leq -\deg_a(\tilde F_L) \] where \(\tilde F_L = a^{-w(L)}F(L)\) is a normalized \(S^1 \times S^2\) HOMFLY-PT invariant using the writhe \(w(L)\) of \(L\).

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
57R17 Symplectic and contact topology in high or arbitrary dimension
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1142/S0218216598000243 · Zbl 0924.57005 · doi:10.1142/S0218216598000243
[2] S. Chmutov and V. Goryunov, Topics in Singularity Theory. V. I. Arnold’s 60th Anniversary Collection, American Mathematical Society Translations Series 2 180, eds. A. Khovanskii, A. Varchenko and V. Vassiliev (American Mathematical Society, Providence, RI, 1997) pp. 25–44.
[3] DOI: 10.1142/S0218216512500605 · Zbl 1251.57014 · doi:10.1142/S0218216512500605
[4] Cornwell C. R., Int. Math. Res. Not. 2012 pp 1890–
[5] DOI: 10.1016/S0393-0440(01)00013-4 · Zbl 1028.57005 · doi:10.1016/S0393-0440(01)00013-4
[6] DOI: 10.1007/PL00004890 · doi:10.1007/PL00004890
[7] DOI: 10.2307/121005 · Zbl 0919.57012 · doi:10.2307/121005
[8] DOI: 10.1017/S0305004105009047 · Zbl 1108.57005 · doi:10.1017/S0305004105009047
[9] DOI: 10.1016/0001-8708(89)90004-2 · Zbl 0681.20030 · doi:10.1016/0001-8708(89)90004-2
[10] DOI: 10.2140/pjm.2012.258.393 · Zbl 1280.57018 · doi:10.2140/pjm.2012.258.393
[11] DOI: 10.1017/S0305004104007984 · Zbl 1083.20002 · doi:10.1017/S0305004104007984
[12] DOI: 10.2140/agt.2002.2.11 · Zbl 1002.57014 · doi:10.2140/agt.2002.2.11
[13] DOI: 10.4310/JSG.2004.v2.n3.a6 · doi:10.4310/JSG.2004.v2.n3.a6
[14] Rutherford D., Quantum Topol. 2 pp 183–
[15] Stanley R. P., Enumerative Combinatorics 2 (2001) · Zbl 0978.05002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.