Fazzi, Antonio; Guglielmi, Nicola; Markovsky, Ivan An ODE-based method for computing the approximate greatest common divisor of polynomials. (English) Zbl 1433.65076 Numer. Algorithms 81, No. 2, 719-740 (2019). MSC: 65F45 15A24 65K10 11R09 PDF BibTeX XML Cite \textit{A. Fazzi} et al., Numer. Algorithms 81, No. 2, 719--740 (2019; Zbl 1433.65076) Full Text: DOI OpenURL
Bourne, Martin; Winkler, Joab R.; Yi, Su The computation of the degree of an approximate greatest common divisor of two Bernstein polynomials. (English) Zbl 1353.65014 Appl. Numer. Math. 111, 17-35 (2017). MSC: 13P15 33C45 65F99 PDF BibTeX XML Cite \textit{M. Bourne} et al., Appl. Numer. Math. 111, 17--35 (2017; Zbl 1353.65014) Full Text: DOI Link OpenURL
Winkler, Joab R. Polynomial computations for blind image deconvolution. (English) Zbl 1357.68285 Linear Algebra Appl. 502, 77-103 (2016). MSC: 68U10 94A08 PDF BibTeX XML Cite \textit{J. R. Winkler}, Linear Algebra Appl. 502, 77--103 (2016; Zbl 1357.68285) Full Text: DOI OpenURL
Li, Zhe; Liu, Qi A heuristic verification of the degree of the approximate GCD of two univariate polynomials. (English) Zbl 1302.68333 Numer. Algorithms 67, No. 2, 319-334 (2014). MSC: 68W30 65H04 13P05 11A05 PDF BibTeX XML Cite \textit{Z. Li} and \textit{Q. Liu}, Numer. Algorithms 67, No. 2, 319--334 (2014; Zbl 1302.68333) Full Text: DOI OpenURL
Belhaj, Skander Computing the polynomial remainder sequence via Bézout matrices. (English) Zbl 1285.65022 J. Comput. Appl. Math. 250, 244-255 (2013). MSC: 65F30 PDF BibTeX XML Cite \textit{S. Belhaj}, J. Comput. Appl. Math. 250, 244--255 (2013; Zbl 1285.65022) Full Text: DOI OpenURL
Terui, Akira GPGCD: an iterative method for calculating approximate GCD of univariate polynomials. (English) Zbl 1291.65162 Theor. Comput. Sci. 479, 127-149 (2013). MSC: 65H10 12Y05 12E05 68W30 PDF BibTeX XML Cite \textit{A. Terui}, Theor. Comput. Sci. 479, 127--149 (2013; Zbl 1291.65162) Full Text: DOI arXiv OpenURL
Nagasaka, Kosaku Approximate polynomial GCD over integers. (English) Zbl 1248.11104 J. Symb. Comput. 46, No. 12, 1306-1317 (2011). MSC: 11Y16 68W20 65D99 11C08 PDF BibTeX XML Cite \textit{K. Nagasaka}, J. Symb. Comput. 46, No. 12, 1306--1317 (2011; Zbl 1248.11104) Full Text: DOI OpenURL
Terui, Akira GPGCD, an iterative method for calculating approximate GCD, for multiple univariate polynomials. (English) Zbl 1290.68139 Gerdt, Vladimir P. (ed.) et al., Computer algebra in scientific computing. 12th international workshop, CASC 2010, Tsakhkadzor, Armenia, September 6–12, 2010. Proceedings. Berlin: Springer (ISBN 978-3-642-15273-3/pbk). Lecture Notes in Computer Science 6244, 238-249 (2010). MSC: 68W30 12E05 12Y05 65D99 PDF BibTeX XML Cite \textit{A. Terui}, Lect. Notes Comput. Sci. 6244, 238--249 (2010; Zbl 1290.68139) Full Text: DOI arXiv OpenURL
Winkler, Joab R.; Hasan, Madina A non-linear structure preserving matrix method for the low rank approximation of the Sylvester resultant matrix. (English) Zbl 1196.65083 J. Comput. Appl. Math. 234, No. 12, 3226-3242 (2010). MSC: 65F30 15A24 15A60 12E05 PDF BibTeX XML Cite \textit{J. R. Winkler} and \textit{M. Hasan}, J. Comput. Appl. Math. 234, No. 12, 3226--3242 (2010; Zbl 1196.65083) Full Text: DOI OpenURL
Winkler, Joab R.; Allan, John D. Structured total least norm and approximate GCDs of inexact polynomials. (English) Zbl 1136.65049 J. Comput. Appl. Math. 215, No. 1, 1-13 (2008). MSC: 65H05 11A05 11C08 PDF BibTeX XML Cite \textit{J. R. Winkler} and \textit{J. D. Allan}, J. Comput. Appl. Math. 215, No. 1, 1--13 (2008; Zbl 1136.65049) Full Text: DOI OpenURL