Polyhedral realization of a Thurston compactification. (English. French summary) Zbl 1295.30094

Summary: Let \(\Sigma _{ 3}^{ - }\) be the connected sum of three real projective planes. We realize the Thurston compactification of the Teichmüller space \(\mathrm{Teich}(\Sigma _{ 3}^{ - })\) as a simplex in \(\mathbf{P}(\mathbb{R}^{ 4 })\).


30F10 Compact Riemann surfaces and uniformization
30F60 Teichmüller theory for Riemann surfaces
Full Text: DOI Link Link


[1] Bonahon (F.).— The geometry of Teichmüller space via geodesic currents. Invent. Math., 92(1), p. 139-162 (1988). · Zbl 0653.32022
[2] Fathi (A.), Laudenbach (F.), and Poénaru (V.).— Travaux de Thurston sur les surfaces, Astérisque, vol. 66-67. Société Mathématique de France (1991). · Zbl 0446.57018
[3] Gendulphe (M.).— Paysage systolique des surfaces hyperboliques de caractéristique -1. available at http://matthieu.gendulphe.com.
[4] Hamenstädt (U.).— Parametrizations of Teichmüller space and its Thurston boundary. In Geometric analysis and nonlinear partial differential equations, p. 81-88. Springer (2003). · Zbl 1044.32005
[5] Scharlemann (M.).— The complex of curves on nonorientable surfaces. J. London Math. Soc. (2), 25(1), p. 171-184, 1982. · Zbl 0479.57005
[6] Schmutz (P.).— Une paramétrisation de l’espace de Teichmüller de genre \(g\) donnée par \(6g-5\) géodésiques explicites. In Séminaire de Théorie Spectrale et Géométrie, No. 10, Année 1991-1992, volume 10, p. 59-64. Univ. Grenoble I (1992). · Zbl 0773.53017
[7] Schmutz (P.).— Die Parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen. Comment. Math. Helv., 68(2), p. 278-288 (1993). · Zbl 0790.30036
[8] Thurston (W. P.).— On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc., 19(2), p. 417-431 (1988). · Zbl 0674.57008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.