Chen, Zhen; Cong, Bing Long; Liu, Xiang Dong A robust attitude control strategy with guaranteed transient performance via modified Lyapunov-based control and integral sliding mode control. (English) Zbl 1345.70048 Nonlinear Dyn. 78, No. 3, 2205-2218 (2014). Summary: In this paper, a robust control strategy with guaranteed transient performance is presented for spacecraft attitude maneuvers. Firstly, a Lyapunov-based controller is designed to achieve high-performance attitude control in the absence of disturbance and parameter variation. Unlike most existing designs, the feedback gains in the proposed controller increase with the attitude error convergence. Consequently, the system response can be accelerated without increasing the control torque at large attitude error. The overshooting phenomenon is also avoided by imposing a restriction on the parameter selection. Then, the integral sliding mode control technique is employed to preserve the desired transient characteristics and improve the robustness. Furthermore, by combining an adaptive scheme with the boundary layer method, the conservativeness in the switching gain selection is reduced and the chattering is also suppressed. Theoretical analysis and simulation results verify the effectiveness of the proposed strategy. Cited in 4 Documents MSC: 70Q05 Control of mechanical systems 93C10 Nonlinear systems in control theory 93C41 Control/observation systems with incomplete information 93B52 Feedback control 93B51 Design techniques (robust design, computer-aided design, etc.) 37M05 Simulation of dynamical systems 37N35 Dynamical systems in control Keywords:attitude control; transient performance; Lyapunov-based control; integral sliding mode control; switching gain adaptation PDFBibTeX XMLCite \textit{Z. Chen} et al., Nonlinear Dyn. 78, No. 3, 2205--2218 (2014; Zbl 1345.70048) Full Text: DOI References: [1] Schaub, H., Junkins, J.: Analytical Mechanics of Space Systems. AIAA, Reston (2009) · Zbl 1194.70001 [2] Meyer, G.: Design and global analysis of spacecraft attitude control systems. NASA, Technical Report R-361 (1971) · Zbl 1280.93018 [3] Wie, B., Weiss, H., Arapostthis, A.: A quaternion feedback regulator for spacecraft eigenaxis rotations. J. Guid. Control Dynam. 12(3), 375-380 (1989) · doi:10.2514/3.20418 [4] Wen, J., Kreutz-Delgado, K.: The attitude control problem. IEEE Trans. Autom. Control. 36(10), 1148-1162 (1991) · Zbl 0758.93053 · doi:10.1109/9.90228 [5] Suk, J., Boo, S., Kim, Y.: Lyapunov control law for slew maneuver using time finite element analysis. J. Guid. Control Dynam. 24(1), 87-94 (2001) · Zbl 1017.52014 · doi:10.2514/2.4679 [6] Schlanbusch, R., Loría, A., Kristiansen, R., et al.: PD+ attitude control of rigid bodies with improved performance. In: Proceedings of IEEE Conference Decision and Control, Atlanta, GA, pp. 7069-7074 (2010) [7] Lizarralde, F., Wen, J.: Attitude control without angular velocity measurement: a passivity approach. IEEE Trans. Autom. Control. 41(3), 468-472 (1996) · Zbl 0846.93065 · doi:10.1109/9.486654 [8] Tsiotras, P.: Further passivity results for the attitude control problem. IEEE Trans. Autom. Control. 43(11), 1597-1600 (1998) · Zbl 0989.93081 · doi:10.1109/9.728877 [9] Kristiansen, R., Loría, A., Chaillet, A., et al.: Spacecraft relative rotation tracking without angular velocity measurements. Automatica 45(3), 750-756 (2009) · Zbl 1168.93333 · doi:10.1016/j.automatica.2008.10.012 [10] Akella, M.: Rigid body attitude tracking without angular velocity feedbac. Syst. Control Lett. 42(4), 321-326 (2001) · Zbl 1032.93048 · doi:10.1016/S0167-6911(00)00102-X [11] Yamashita, T., Ogura, N., Kurii, T., et al.: Improved satellite attitude control using a disturbance compensator. Acta Aeronaut. 55(1), 15-25 (2004) · doi:10.1016/j.actaastro.2004.02.004 [12] Sun, H., Li, S.: Composite control method for stabilizing spacecraft attitude in terms of Rodrigues parameters. Chin. J. Aeronaut. 26(3), 687-696 (2013) · doi:10.1016/j.cja.2013.04.032 [13] Sun, H., Li, S., Fei, S.: A composite control scheme for 6DOF spacecraft formation control. Acta Aeronaut. 69(7-8), 595-611 (2011) · doi:10.1016/j.actaastro.2011.04.009 [14] Krstić, M., Tsiotras, P.: Inverse optimal stabilization of a rigid spacecraft. IEEE Trans. Autom. Control. 44(5), 1042-1050 (1999) · Zbl 1136.93424 · doi:10.1109/9.763225 [15] Kim, K., Kim, Y.: Robust backstepping control for slew maneuver using nonlinear tracking function. IEEE Trans. Control Syst. Technol. 11(6), 822-829 (2003) · doi:10.1109/TCST.2003.815608 [16] Ali, I., Radice, G., Kim, J.: Backstepping control design with actuator torque bound for spacecraft attitude maneuver. J. Guid. Control Dynam. 33(1), 254-259 (2010) · doi:10.2514/1.45541 [17] Liu, Y., Zhao, T., Song, J., et al.: Adaptive spacecraft attitude tracking controller design based on similar skew-symmetric structure. Chin. J. Aeronaut. 23(2), 227-234 (2010) · doi:10.1016/S1000-9361(09)60209-0 [18] Cong, B., Liu, X., Chen, Z.: Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers. Aerosp. Sci. Technol. 30(1), 1-7 (2013) · doi:10.1016/j.ast.2013.05.005 [19] Huang, Y., Kuo, T., Chang, S.: Adaptive sliding-mode control for nonlinear systems with uncertain parameters. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(2), 534-539 (2008) · Zbl 0473.93056 [20] Seywald, H., Anthony T., Lim, K.: Stability analysis for constrained principal axis slew maneuvers. In: Proceedings of 35th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, pp. 1-11 (1997) [21] Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electro-mechanical Systems. Taylor & Francis, London (2009) · doi:10.1201/9781420065619 [22] Corless, M., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Autom. Control. 26(5), 1139-1144 (1981) · Zbl 0473.93056 · doi:10.1109/TAC.1981.1102785 [23] Cong, B., Liu, X., Chen, Z.: Improved adaptive sliding mode control for a class of second-order mechanical systems. Asian J. Control 15(6), 1862-1866 (2013) · Zbl 1280.93018 · doi:10.1002/asjc.568 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.