Khaliq, Abdul; Zubair, Muhammad; Khan, A. Q. Asymptotic behavior of the solutions of difference equation system of exponential form. (English) Zbl 1445.39008 Fractals 28, No. 6, Article ID 2050118, 16 p. (2020). MSC: 39A22 PDF BibTeX XML Cite \textit{A. Khaliq} et al., Fractals 28, No. 6, Article ID 2050118, 16 p. (2020; Zbl 1445.39008) Full Text: DOI OpenURL
Khaliq, Abdul; Alayachi, H. S.; Noorani, M. S. M.; Khan, A. Q. On stability analysis of higher-order rational difference equation. (English) Zbl 1459.39039 Discrete Dyn. Nat. Soc. 2020, Article ID 3094185, 10 p. (2020). MSC: 39A30 PDF BibTeX XML Cite \textit{A. Khaliq} et al., Discrete Dyn. Nat. Soc. 2020, Article ID 3094185, 10 p. (2020; Zbl 1459.39039) Full Text: DOI OpenURL
El-Dessoky, Mohamed M. On the difference equation \(x_{n+1}=ax_{n-1}+bx_{n-k}+\frac{cx_{n-s}}{dx_{n-s}-e}\). (English) Zbl 1372.39014 Math. Methods Appl. Sci. 40, No. 3, 535-545 (2017). Reviewer: Fei Xue (Hartford) MSC: 39A20 39A23 39A30 39A22 PDF BibTeX XML Cite \textit{M. M. El-Dessoky}, Math. Methods Appl. Sci. 40, No. 3, 535--545 (2017; Zbl 1372.39014) Full Text: DOI OpenURL
Ahmed, A. M.; Eshtewy, N. A. Attractivity of the recursive sequence \(x_{n + 1} = (A - B x_{n - 2}) /(C + D x_{n - 1})\). (English) Zbl 1342.39015 J. Egypt. Math. Soc. 24, No. 3, 392-395 (2016). MSC: 39A30 39A20 PDF BibTeX XML Cite \textit{A. M. Ahmed} and \textit{N. A. Eshtewy}, J. Egypt. Math. Soc. 24, No. 3, 392--395 (2016; Zbl 1342.39015) Full Text: DOI OpenURL
Gan, Chenquan; Yang, Xiaofan; Liu, Wanping Global behavior of \(x_{n + 1} = (\alpha + \beta x_{n - k}) /(\gamma + x_n)\). (English) Zbl 1417.39058 Discrete Dyn. Nat. Soc. 2013, Article ID 963757, 5 p. (2013). MSC: 39A30 39A23 PDF BibTeX XML Cite \textit{C. Gan} et al., Discrete Dyn. Nat. Soc. 2013, Article ID 963757, 5 p. (2013; Zbl 1417.39058) Full Text: DOI OpenURL
Zayed, E. M. E.; El-Moneam, M. A. On the global attractivity of two nonlinear difference equations. (English. Russian original) Zbl 1290.37007 J. Math. Sci., New York 177, No. 3, 487-499 (2011); translation from Sovrem. Mat. Prilozh. 70 (2011). MSC: 37B25 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, J. Math. Sci., New York 177, No. 3, 487--499 (2011; Zbl 1290.37007); translation from Sovrem. Mat. Prilozh. 70 (2011) Full Text: DOI OpenURL
Hamza, Alaa E.; Ahmed, A. M.; Youssef, A. M. On the recursive sequence \(x_{n+1}=\frac{x+bx_n}{A+Bx^k_{n-1}}\). (English) Zbl 1242.39013 Arab J. Math. Sci. 17, No. 1, 31-44 (2011). Reviewer: Khodabakhsh Hessami Pilehrood (Halifax) MSC: 39A20 39A30 39A22 PDF BibTeX XML Cite \textit{A. E. Hamza} et al., Arab J. Math. Sci. 17, No. 1, 31--44 (2011; Zbl 1242.39013) Full Text: DOI OpenURL
Hamza, Alaa E. On the recursive sequence \(x_{n+1}=(\alpha-\beta x_{n-k})/g(x_n,x_{n-1},\dots,x_{n-k+1})\). (English) Zbl 1208.39012 Comput. Math. Appl. 60, No. 7, 2170-2177 (2010). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A21 39A30 PDF BibTeX XML Cite \textit{A. E. Hamza}, Comput. Math. Appl. 60, No. 7, 2170--2177 (2010; Zbl 1208.39012) Full Text: DOI OpenURL
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=Ax_{n}+Bx_{n-k}+\frac{\beta x_{n}+\gamma x_{n-k}}{cx_{n}+Dx_{n-k}}\). (English) Zbl 1204.39008 Acta Appl. Math. 111, No. 3, 287-301 (2010). Reviewer: N. C. Apreutesei (Iaşi) MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, Acta Appl. Math. 111, No. 3, 287--301 (2010; Zbl 1204.39008) Full Text: DOI EuDML OpenURL
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=\frac{\alpha + \beta x_{n-k}}{\gamma-x_{n}}\). (English) Zbl 1181.39014 J. Appl. Math. Comput. 31, No. 1-2, 229-237 (2009). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A30 39A23 39A22 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, J. Appl. Math. Comput. 31, No. 1--2, 229--237 (2009; Zbl 1181.39014) Full Text: DOI OpenURL
Hamza, Alaa E.; Barbary, S. G. Attractivity of the recursive sequence \(x_{n+1}=(\alpha-\beta x_n)F(x_{n-1},\dots,x_{n-k})\). (English) Zbl 1187.39023 Math. Comput. Modelling 48, No. 11-12, 1744-1749 (2008). MSC: 39A30 PDF BibTeX XML Cite \textit{A. E. Hamza} and \textit{S. G. Barbary}, Math. Comput. Modelling 48, No. 11--12, 1744--1749 (2008; Zbl 1187.39023) Full Text: DOI OpenURL
Zayed, E. M. E.; Shamardan, A. B.; Nofal, T. A. On the rational recursive sequence \(x_{n+1}=(\alpha - \beta x_{n})/(\gamma - \delta x_{n} - x_{n - k})\). (English) Zbl 1154.39017 Int. J. Math. Math. Sci. 2008, Article ID 391265, 15 p. (2008). Reviewer: Lothar Berg (Rostock) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{E. M. E. Zayed} et al., Int. J. Math. Math. Sci. 2008, Article ID 391265, 15 p. (2008; Zbl 1154.39017) Full Text: DOI OpenURL
Paternoster, Beatrice; Shaikhet, Leonid Stability of equilibrium points of fractional difference equations with stochastic perturbations. (English) Zbl 1149.39007 Adv. Difference Equ. 2008, Article ID 718408, 21 p. (2008). MSC: 39A11 39A20 93E15 37H10 PDF BibTeX XML Cite \textit{B. Paternoster} and \textit{L. Shaikhet}, Adv. Difference Equ. 2008, Article ID 718408, 21 p. (2008; Zbl 1149.39007) Full Text: DOI EuDML OpenURL
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=(A+\sum_{i=0}^{k}\alpha _{i}x_{n - i})/(B+\sum _{i=0}^{k}\beta _{i}x_{n - i})\). (English) Zbl 1144.39014 Int. J. Math. Math. Sci. 2007, Article ID 23618, 12 p. (2007). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A11 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, Int. J. Math. Math. Sci. 2007, Article ID 23618, 12 p. (2007; Zbl 1144.39014) Full Text: DOI OpenURL
Zhang, Guang; Stević, Stevo On the difference equation \(x_{n+1}=\frac{a+bx_{n-k}^{cx_n-m}}{1+g(x_{n-1})}\). (English) Zbl 1137.39009 J. Appl. Math. Comput. 25, No. 1-2, 201-216 (2007). Reviewer: Weinian Zhang (Sichuan) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{S. Stević}, J. Appl. Math. Comput. 25, No. 1--2, 201--216 (2007; Zbl 1137.39009) Full Text: DOI OpenURL
Chen, Haibo; Wang, Haihua Global attractivity of the difference equation \(x_{n+1}=(x_{n}+\alpha x_{n-1})/(\beta +x_{n})\). (English) Zbl 1108.39005 Appl. Math. Comput. 181, No. 2, 1431-1438 (2006). Reviewer: Lothar Berg (Rostock) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{H. Chen} and \textit{H. Wang}, Appl. Math. Comput. 181, No. 2, 1431--1438 (2006; Zbl 1108.39005) Full Text: DOI OpenURL
Ozturk, I.; Bozkurt, F.; Ozen, S. On the difference equation \(y_{n+1} = \frac {\alpha +\beta e^{-y_n}}{\gamma +y_{n-1}}\). (English) Zbl 1108.39012 Appl. Math. Comput. 181, No. 2, 1387-1393 (2006). Reviewer: Lothar Berg (Rostock) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{I. Ozturk} et al., Appl. Math. Comput. 181, No. 2, 1387--1393 (2006; Zbl 1108.39012) Full Text: DOI OpenURL
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=\frac {\alpha x_n+\beta x_{n-1}+\gamma x_{n-2}+\delta x_{n-3}} {Ax_b+ Bx_{n-1}+ Cx_{n-2}+ Dx_{n-3}}\). (English) Zbl 1106.39016 J. Appl. Math. Comput. 22, No. 1-2, 247-262 (2006). Reviewer: Wan-Tong Li (Lanzhou) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, J. Appl. Math. Comput. 22, No. 1--2, 247--262 (2006; Zbl 1106.39016) Full Text: DOI OpenURL
Zhang, Lijie; Zhang, Guang; Liu, Hui Periodicity and attractivity for a rational recursive sequence. (English) Zbl 1083.39015 J. Appl. Math. Comput. 19, No. 1-2, 191-201 (2005). Reviewer: Lothar Berg (Rostock) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Appl. Math. Comput. 19, No. 1--2, 191--201 (2005; Zbl 1083.39015) Full Text: DOI OpenURL
Li, Wantong; Sun, Hongrui Dynamics of a rational difference equation. (English) Zbl 1071.39009 Appl. Math. Comput. 163, No. 2, 577-591 (2005). Reviewer: Fozi Dannan (Damascus) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{W. Li} and \textit{H. Sun}, Appl. Math. Comput. 163, No. 2, 577--591 (2005; Zbl 1071.39009) Full Text: DOI OpenURL
Yan, Xing-Xue; Li, Wan-Tong; Zhao, Zhu On the recursive sequence \(x_{n+1}=\alpha-(x_n/x_{n-1})\). (English) Zbl 1068.39030 J. Appl. Math. Comput. 17, No. 1-2, 269-282 (2005). Reviewer: Lothar Berg (Rostock) MSC: 39A11 39A20 37C70 PDF BibTeX XML Cite \textit{X.-X. Yan} et al., J. Appl. Math. Comput. 17, No. 1--2, 269--282 (2005; Zbl 1068.39030) Full Text: DOI OpenURL
Yang, Xiaofan; Su, Weifeng; Chen, Bill; Megson, Graham M.; Evans, David J. On the recursive sequence \(x_n = \frac{ax_{n-1}+bx_{n-2}}{c+dx_{n-1}x_{n-2}}\). (English) Zbl 1068.39031 Appl. Math. Comput. 162, No. 3, 1485-1497 (2005). Reviewer: Wan-Tong Li (Lanzhou) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{X. Yang} et al., Appl. Math. Comput. 162, No. 3, 1485--1497 (2005; Zbl 1068.39031) Full Text: DOI OpenURL
Zeng, X. Y.; Shi, B.; Zhang, D. C. Stability of solutions for the recursive sequence \(x_{n+1}=(\alpha -\beta x_{n})/(\gamma +g(x_{n-k}))\). (English) Zbl 1068.39032 J. Comput. Appl. Math. 176, No. 2, 283-291 (2005). Reviewer: Wei Nian Li (Shanghai) MSC: 39A11 39A20 37C70 39A12 PDF BibTeX XML Cite \textit{X. Y. Zeng} et al., J. Comput. Appl. Math. 176, No. 2, 283--291 (2005; Zbl 1068.39032) Full Text: DOI OpenURL
Zhang, Guang; Zhang, Lijie Periodicity and attractivity of a nonlinear higher order difference equation. (English) Zbl 1068.39034 Appl. Math. Comput. 161, No. 2, 395-401 (2005). Reviewer: D. M. Bors (Iaşi) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{L. Zhang}, Appl. Math. Comput. 161, No. 2, 395--401 (2005; Zbl 1068.39034) Full Text: DOI OpenURL
Yang, Xiaofan; Lai, Hongjian; Evans, David J.; Megson, Graham M. Global asymptotic stability in a rational recursive sequence. (English) Zbl 1071.39018 Appl. Math. Comput. 158, No. 3, 703-716 (2004). Reviewer: Ioannis P. Stavroulakis (Ioannina) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{X. Yang} et al., Appl. Math. Comput. 158, No. 3, 703--716 (2004; Zbl 1071.39018) Full Text: DOI OpenURL
Yang, Xiaofan; Chen, Bill; Megson, Graham M.; Evans, David J. Global attractivity in a recursive sequence. (English) Zbl 1063.39011 Appl. Math. Comput. 158, No. 3, 667-682 (2004). Reviewer: Vladimir Răsvan (Compiègne) MSC: 39A11 39A12 39A20 PDF BibTeX XML Cite \textit{X. Yang} et al., Appl. Math. Comput. 158, No. 3, 667--682 (2004; Zbl 1063.39011) Full Text: DOI OpenURL
Yan, Xingxue; Li, Wantong Dynamic behavior of a recursive sequence. (English) Zbl 1069.39025 Appl. Math. Comput. 157, No. 3, 713-727 (2004). Reviewer: Roman Hilscher (Brno) MSC: 39A20 39A11 PDF BibTeX XML Cite \textit{X. Yan} and \textit{W. Li}, Appl. Math. Comput. 157, No. 3, 713--727 (2004; Zbl 1069.39025) Full Text: DOI OpenURL
El-Owaidy, H. M.; Ahmed, A. M.; Elsady, Z. Global attractivity of the recursive sequence \(x_{n+1}= \frac {\alpha- \beta x_{n-k}} {\gamma+ x_n}\). (English) Zbl 1062.39007 J. Appl. Math. Comput. 16, No. 1-2, 243-249 (2004). Reviewer: Jurang Yan (Taiyuan) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{H. M. El-Owaidy} et al., J. Appl. Math. Comput. 16, No. 1--2, 243--249 (2004; Zbl 1062.39007) Full Text: DOI OpenURL
He, Wansheng; Li, Wantong; Yan, Xinxue Global attractivity of the difference equation \(x_{n+1}=\alpha+(x_{n-k}/x_{n})\). (English) Zbl 1056.39021 Appl. Math. Comput. 151, No. 3, 879-885 (2004). Reviewer: Akira Tsutsumi (Suita) MSC: 39A12 39A10 39A11 PDF BibTeX XML Cite \textit{W. He} et al., Appl. Math. Comput. 151, No. 3, 879--885 (2004; Zbl 1056.39021) Full Text: DOI OpenURL
El-Owaidy, H. M.; Ahmed, A. M.; Elsady, Z. Global attractivity of the recursive sequence \(x_{n+1}=(\alpha-\beta x_{n-1})/(\gamma+x_{n})\). (English) Zbl 1055.39028 Appl. Math. Comput. 151, No. 3, 827-833 (2004). Reviewer: Akira Tsutsumi (Suita) MSC: 39A12 39A11 39A20 PDF BibTeX XML Cite \textit{H. M. El-Owaidy} et al., Appl. Math. Comput. 151, No. 3, 827--833 (2004; Zbl 1055.39028) Full Text: DOI OpenURL
Yan, Xing-Xue; Li, Wan-Tong Global attractivity for a class of higher order nonlinear difference equations. (English) Zbl 1040.39009 Appl. Math. Comput. 149, No. 2, 533-546 (2004). Reviewer: Nguyen Van Minh (Harrisonburg) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{X.-X. Yan} and \textit{W.-T. Li}, Appl. Math. Comput. 149, No. 2, 533--546 (2004; Zbl 1040.39009) Full Text: DOI OpenURL
El-Owaidy, H. M.; Ahmed, A. M.; Mousa, M. S. On the recursive sequences \(x_{n+1}=\frac {-\alpha x_{n-1}}{\beta\pm x_n}\). (English) Zbl 1034.39004 Appl. Math. Comput. 145, No. 2-3, 747-753 (2003). Reviewer: Patricia J. Y. Wong (Singapore) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{H. M. El-Owaidy} et al., Appl. Math. Comput. 145, No. 2--3, 747--753 (2003; Zbl 1034.39004) Full Text: DOI OpenURL
Yan, Xing-Xue; Li, Wan-Tong Global attractivity in a rational recursive sequence. (English) Zbl 1044.39013 Appl. Math. Comput. 145, No. 1, 1-12 (2003). Reviewer: Patricia J. Y. Wong (Singapore) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{X.-X. Yan} and \textit{W.-T. Li}, Appl. Math. Comput. 145, No. 1, 1--12 (2003; Zbl 1044.39013) Full Text: DOI OpenURL
Yan, Xing-Xue; Li, Wan-Tong Global attractivity in the recursive sequence \(x_{n+1}=(\alpha-\beta x_{n})/(\gamma-x_{n-1})\). (English) Zbl 1030.39024 Appl. Math. Comput. 138, No. 2-3, 415-423 (2003). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A12 39B05 37D45 PDF BibTeX XML Cite \textit{X.-X. Yan} and \textit{W.-T. Li}, Appl. Math. Comput. 138, No. 2--3, 415--423 (2003; Zbl 1030.39024) Full Text: DOI OpenURL