×

D-brane gauge theories from toric singularities of the form \(\mathbb{C}^3/\Gamma\) and \(\mathbb{C}^4/\Gamma\). (English) Zbl 0972.81139

Summary: We discuss examples of D-branes probing toric singularities, and the computation of their world-volume gauge theories from the geometric data of the singularities. We consider several such examples of D-branes on partial resolutions of the orbifolds \(\mathbb{C}^3/\mathbb{Z}_2\times\mathbb{Z}_2\), \(\mathbb{C}^3/\mathbb{Z}_2\times\mathbb{Z}_3\) and \(\mathbb{C}^4/\mathbb{Z}_2\times\mathbb{Z}_2\times\mathbb{Z}_2\).

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory
14J81 Relationships between surfaces, higher-dimensional varieties, and physics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Douglas, M.R.; Kabat, D.; Pouliot, P.; Shenker, S., D-branes and short distances in string theory, Nucl. phys. B, 485, 85, (1997) · Zbl 0925.81232
[2] Greene, B.; Kanter, Y., Small volumes in compactified string theory, Nucl. phys. B, 497, 127, (1997) · Zbl 0935.81055
[3] Aspinwall, P.; Greene, B.; Morrison, D., Calabi – yau moduli space, mirror manifolds and space – time topology change in string theory, Nucl. phys. B, 416, 78, (1994) · Zbl 0899.32006
[4] Witten, E., Phases of \(N=2\) theories in two dimensions, Nucl. phys. B, 403, 159, (1993) · Zbl 0910.14020
[5] Douglas, M.; Greene, B.; Morrison, D., Orbifold resolution by D-branes, Nucl. phys. B, 506, 84, (1997) · Zbl 0925.81266
[6] Witten, E., Phase transitions in M theory and F theory, Nucl. phys. B, 471, 195, (1996) · Zbl 1003.81537
[7] Muto, T., D-branes on orbifolds and topology change, Nucl. phys. B, 521, 183, (1998) · Zbl 1047.81554
[8] Douglas, M.; Moore, G., D-branes, quivers, and ALE instantons
[9] Johnson, C.; Myers, R., Aspects of type IIB theory on ALE spaces, Phys. rev. D, 55, 6382, (1997)
[10] Douglas, M.; Greene, B., Metrics on D-brane orbifolds, Adv. theor. math. phys., 1, 184, (1998) · Zbl 0897.32011
[11] Douglas, M.; Kato, A.; Ooguri, H., Adv. theor. math. phys., 1, 237, (1998)
[12] Muto, T., Brane configurations for three-dimensional nonabelian orbifolds
[13] Feng, B.; Hanany, A.; He, Y., Z-D-brane box models and nonchiral dihedral quivers · Zbl 0990.81102
[14] Oh, K.; Tatar, R., Branes at orbifolded conifold singularities and supersymmetric gauge field theories, Jhep, 9910i, 0319, (1999) · Zbl 0957.81025
[15] Cvetic, M.; Everett, L.; Langacker, P.; Wang, J., Blowing up the four-dimensional Z(3) orientifold, Jhep, 9904, 020, (1999)
[16] Fulton, W., Introduction to toric varieties, (1993), Princeton University Press
[17] Cox, D., Recent developments in toric geometry · Zbl 0899.14025
[18] Greene, B., D-brane topology changing transitions, Nucl. phys. B, 525, 284, (1998) · Zbl 1031.81609
[19] Mukhopadhay, S.; Ray, K., Conifolds from D-branes, Phys. lett. B, 423, 247, (1998)
[20] Feng, B.; Hanany, A.; He, Y., D-brane gauge theories from toric singularities and toric duality · Zbl 0972.81138
[21] Beasley, C.; Greene, B.; Lazaroiu, C.; Plesser, M., D3-branes on partial resolutions of abelian quotient singularities of calabi – yau threefolds, Nucl. phys. B, 553, 711, (1999)
[22] Park, J.; Rabadan, R.; Uranga, A.M.; Park, J.; Rabadan, R.; Uranga, A.M., Orientifolding the conifold, Nucl. phys. B, 570, 38, (2000) · Zbl 0951.81059
[23] Uranga, A., Brane configurations for branes at conifolds, Jhep, 9901, 022, (1999) · Zbl 0965.81073
[24] Morrison, D.; Plesser, R., Nonspherical horizons 1, Adv. theor. math. phys., 3, 1, (1999)
[25] Ahn, A.; Kim, H., Branes at \( C\^{}\{4\}/Γ\) singularity from toric geometry, Jhep, 9904, 012, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.