Abdelhedi, Bouthaina; Zaag, Hatem Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. (English) Zbl 1479.35136 Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2607-2623 (2021). MSC: 35B44 35K15 35K58 35R09 PDF BibTeX XML Cite \textit{B. Abdelhedi} and \textit{H. Zaag}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2607--2623 (2021; Zbl 1479.35136) Full Text: DOI arXiv OpenURL
Duong, G. K.; Kavallaris, N. I.; Zaag, H. Diffusion-induced blowup solutions for the shadow limit model of a singular Gierer-Meinhardt system. (English) Zbl 1477.35043 Math. Models Methods Appl. Sci. 31, No. 7, 1469-1503 (2021). MSC: 35B44 35B40 35K20 35K58 35R09 PDF BibTeX XML Cite \textit{G. K. Duong} et al., Math. Models Methods Appl. Sci. 31, No. 7, 1469--1503 (2021; Zbl 1477.35043) Full Text: DOI arXiv OpenURL
Fujishima, Yohei; Ishige, Kazuhiro Blowing up solutions for nonlinear parabolic systems with unequal elliptic operators. (English) Zbl 1445.35083 J. Dyn. Differ. Equations 32, No. 3, 1219-1231 (2020). MSC: 35B44 35K51 35K58 35R45 PDF BibTeX XML Cite \textit{Y. Fujishima} and \textit{K. Ishige}, J. Dyn. Differ. Equations 32, No. 3, 1219--1231 (2020; Zbl 1445.35083) Full Text: DOI OpenURL
Del Pino, Manuel; Musso, Monica; Wei, Juncheng; Zhou, Yifu Type II finite time blow-up for the energy critical heat equation in \(\mathbb{R}^4\). (English) Zbl 1439.35284 Discrete Contin. Dyn. Syst. 40, No. 6, 3327-3355 (2020). MSC: 35K58 35B40 PDF BibTeX XML Cite \textit{M. Del Pino} et al., Discrete Contin. Dyn. Syst. 40, No. 6, 3327--3355 (2020; Zbl 1439.35284) Full Text: DOI OpenURL
Wang, Chunhua; Wei, Juncheng; Wei, Suting; Zhou, Yifu Infinite time blow-up for critical heat equation with drift terms. (English) Zbl 1427.35134 Calc. Var. Partial Differ. Equ. 59, No. 1, Paper No. 3, 43 p. (2020). MSC: 35K58 35K55 35B40 PDF BibTeX XML Cite \textit{C. Wang} et al., Calc. Var. Partial Differ. Equ. 59, No. 1, Paper No. 3, 43 p. (2020; Zbl 1427.35134) Full Text: DOI OpenURL
Ghoul, Tej-Eddine; Nguyen, Van Tien; Zaag, Hatem Construction of type I blowup solutions for a higher order semilinear parabolic equation. (English) Zbl 1416.35141 Adv. Nonlinear Anal. 9, 388-412 (2020). MSC: 35K58 35B40 35K55 35K57 PDF BibTeX XML Cite \textit{T.-E. Ghoul} et al., Adv. Nonlinear Anal. 9, 388--412 (2020; Zbl 1416.35141) Full Text: DOI arXiv OpenURL
Duong, Giao Ky A blowup solution of a complex semi-linear heat equation with an irrational power. (English) Zbl 1428.35143 J. Differ. Equations 267, No. 9, 4975-5048 (2019). MSC: 35K05 35B40 35B44 35K55 35K57 35B09 PDF BibTeX XML Cite \textit{G. K. Duong}, J. Differ. Equations 267, No. 9, 4975--5048 (2019; Zbl 1428.35143) Full Text: DOI arXiv OpenURL
Duong, Giao Ky; Zaag, Hatem Profile of a touch-down solution to a nonlocal MEMS model. (English) Zbl 1425.35116 Math. Models Methods Appl. Sci. 29, No. 7, 1279-1348 (2019). MSC: 35K91 35B40 35K20 35K57 35B44 PDF BibTeX XML Cite \textit{G. K. Duong} and \textit{H. Zaag}, Math. Models Methods Appl. Sci. 29, No. 7, 1279--1348 (2019; Zbl 1425.35116) Full Text: DOI arXiv OpenURL
Duong, Giao Ky Profile for the imaginary part of a blowup solution for a complex-valued semilinear heat equation. (English) Zbl 1417.35064 J. Funct. Anal. 277, No. 5, 1531-1579 (2019). MSC: 35K55 35K57 35B44 35B40 PDF BibTeX XML Cite \textit{G. K. Duong}, J. Funct. Anal. 277, No. 5, 1531--1579 (2019; Zbl 1417.35064) Full Text: DOI arXiv OpenURL
Hamza, Mohamed Ali; Zaag, Hatem Prescribing the center of mass of a multi-soliton solution for a perturbed semilinear wave equation. (English) Zbl 1437.35500 J. Differ. Equations 267, No. 6, 3524-3560 (2019). MSC: 35L71 35L67 35L15 35B44 35B40 35B20 35C08 PDF BibTeX XML Cite \textit{M. A. Hamza} and \textit{H. Zaag}, J. Differ. Equations 267, No. 6, 3524--3560 (2019; Zbl 1437.35500) Full Text: DOI arXiv OpenURL
Tayachi, Slim; Zaag, Hatem Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term. (English) Zbl 1423.35186 Trans. Am. Math. Soc. 371, No. 8, 5899-5972 (2019). Reviewer: Johannes Lankeit (Paderborn) MSC: 35K55 35B44 PDF BibTeX XML Cite \textit{S. Tayachi} and \textit{H. Zaag}, Trans. Am. Math. Soc. 371, No. 8, 5899--5972 (2019; Zbl 1423.35186) Full Text: DOI arXiv OpenURL
Duong, Giao Ky; Nguyen, Van Tien; Zaag, Hatem Construction of a stable blowup solution with a prescribed behavior for a non-scaling-invariant semilinear heat equation. (English) Zbl 1407.35092 Tunis. J. Math. 1, No. 1, 13-45 (2019). MSC: 35K05 35B40 35K55 35K57 PDF BibTeX XML Cite \textit{G. K. Duong} et al., Tunis. J. Math. 1, No. 1, 13--45 (2019; Zbl 1407.35092) Full Text: DOI arXiv OpenURL
Ghoul, Tej-Eddine; Nguyen, Van Tien; Zaag, Hatem Construction and stability of blowup solutions for a non-variational semilinear parabolic system. (Construction et stabilité de solutions explosives pour un système parabolique sémilinéaire non-variationel.) (English. French summary) Zbl 1394.35222 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35, No. 6, 1577-1630 (2018). MSC: 35K45 35B44 35B40 35K55 35K57 35B35 35K91 PDF BibTeX XML Cite \textit{T.-E. Ghoul} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35, No. 6, 1577--1630 (2018; Zbl 1394.35222) Full Text: DOI arXiv OpenURL
Combet, Vianney; Martel, Yvan Construction of multibubble solutions for the critical gKdV equation. (English) Zbl 1397.35249 SIAM J. Math. Anal. 50, No. 4, 3715-3790 (2018). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35B44 35B40 PDF BibTeX XML Cite \textit{V. Combet} and \textit{Y. Martel}, SIAM J. Math. Anal. 50, No. 4, 3715--3790 (2018; Zbl 1397.35249) Full Text: DOI arXiv OpenURL
Nouaili, Nejla; Zaag, Hatem Construction of a blow-up solution for the complex Ginzburg-Landau equation in a critical case. (English) Zbl 1397.35295 Arch. Ration. Mech. Anal. 228, No. 3, 995-1058 (2018). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 35Q56 35B44 35B35 PDF BibTeX XML Cite \textit{N. Nouaili} and \textit{H. Zaag}, Arch. Ration. Mech. Anal. 228, No. 3, 995--1058 (2018; Zbl 1397.35295) Full Text: DOI arXiv OpenURL
Ghoul, Tej-Eddine; Nguyen, Van Tien; Zaag, Hatem Blowup solutions for a reaction-diffusion system with exponential nonlinearities. (English) Zbl 1393.35096 J. Differ. Equations 264, No. 12, 7523-7579 (2018). Reviewer: Denise Huet (Nancy) MSC: 35K57 35B40 35K55 PDF BibTeX XML Cite \textit{T.-E. Ghoul} et al., J. Differ. Equations 264, No. 12, 7523--7579 (2018; Zbl 1393.35096) Full Text: DOI arXiv OpenURL
Gustafson, Stephen; Roxanas, Dimitrios Global, decaying solutions of a focusing energy-critical heat equation in \(\mathbb{R}^4\). (English) Zbl 1391.35173 J. Differ. Equations 264, No. 9, 5894-5927 (2018). Reviewer: Dian K. Palagachev (Bari) MSC: 35K05 35B40 35B65 PDF BibTeX XML Cite \textit{S. Gustafson} and \textit{D. Roxanas}, J. Differ. Equations 264, No. 9, 5894--5927 (2018; Zbl 1391.35173) Full Text: DOI arXiv OpenURL
Merle, Frank; Zaag, Hatem Solution to the semilinear wave equation with a pyramid-shaped blow-up surface. (English) Zbl 1475.35209 Sémin. Laurent Schwartz, EDP Appl. 2016-2017, Exp. No. 6, 13 p. (2017). MSC: 35L71 35B40 35B44 35C08 35L15 35L05 35L67 PDF BibTeX XML Cite \textit{F. Merle} and \textit{H. Zaag}, Sémin. Laurent Schwartz, EDP Appl. 2016--2017, Exp. No. 6, 13 p. (2017; Zbl 1475.35209) Full Text: DOI Numdam OpenURL
Fan, Chenjie \(\log\)-\(\log\) blow up solutions blow up at exactly \(m\) points. (English. French summary) Zbl 1382.35263 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 6, 1429-1482 (2017). Reviewer: Guido Schneider (Stuttgart) MSC: 35Q55 35B44 35B65 PDF BibTeX XML Cite \textit{C. Fan}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 6, 1429--1482 (2017; Zbl 1382.35263) Full Text: DOI arXiv OpenURL
Fujishima, Yohei; Ishige, Kazuhiro; Maekawa, Hiroki Blow-up set of type I blowing up solutions for nonlinear parabolic systems. (English) Zbl 1377.35035 Math. Ann. 369, No. 3-4, 1491-1525 (2017). MSC: 35B44 35K40 35R45 PDF BibTeX XML Cite \textit{Y. Fujishima} et al., Math. Ann. 369, No. 3--4, 1491--1525 (2017; Zbl 1377.35035) Full Text: DOI OpenURL
Ghoul, Tej-Eddine; Nguyen, Van Tien; Zaag, Hatem Blowup solutions for a nonlinear heat equation involving a critical power nonlinear gradient term. (English) Zbl 1378.35173 J. Differ. Equations 263, No. 8, 4517-4564 (2017). MSC: 35K58 35K55 35B40 35B44 PDF BibTeX XML Cite \textit{T.-E. Ghoul} et al., J. Differ. Equations 263, No. 8, 4517--4564 (2017; Zbl 1378.35173) Full Text: DOI arXiv OpenURL
Mahmoudi, Fethi; Nouaili, Nejla; Zaag, Hatem Construction of a stable periodic solution to a semilinear heat equation with a prescribed profile. (English) Zbl 1334.35145 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 131, 300-324 (2016). Reviewer: Hussein Fakih (Poitiers) MSC: 35K58 35B44 35B35 PDF BibTeX XML Cite \textit{F. Mahmoudi} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 131, 300--324 (2016; Zbl 1334.35145) Full Text: DOI arXiv OpenURL
Nouaili, Nejla; Zaag, Hatem Profile for a simultaneously blowing up solution to a complex valued semilinear heat equation. (English) Zbl 1335.35126 Commun. Partial Differ. Equations 40, No. 7, 1197-1217 (2015). Reviewer: Christian Stinner (Kaiserslautern) MSC: 35K57 35K40 35B44 PDF BibTeX XML Cite \textit{N. Nouaili} and \textit{H. Zaag}, Commun. Partial Differ. Equations 40, No. 7, 1197--1217 (2015; Zbl 1335.35126) Full Text: DOI arXiv OpenURL
Ru, S.; Chen, Jiecheng The blow-up solutions of the heat equations in \(\mathcal{F} L^1(\mathbb R^N)\). (English) Zbl 1323.35054 J. Funct. Anal. 269, No. 5, 1264-1288 (2015). Reviewer: Dian K. Palagachev (Bari) MSC: 35K05 35K55 PDF BibTeX XML Cite \textit{S. Ru} and \textit{J. Chen}, J. Funct. Anal. 269, No. 5, 1264--1288 (2015; Zbl 1323.35054) Full Text: DOI OpenURL
Fujishima, Yohei; Ishige, Kazuhiro Blow-up set for type I blowing up solutions for a semilinear heat equation. (English) Zbl 1297.35052 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31, No. 2, 231-247 (2014). MSC: 35B44 35K58 35K20 PDF BibTeX XML Cite \textit{Y. Fujishima} and \textit{K. Ishige}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31, No. 2, 231--247 (2014; Zbl 1297.35052) Full Text: DOI OpenURL
Hirata, Kentaro Removable singularities of semilinear parabolic equations. (English) Zbl 1278.35007 Proc. Am. Math. Soc. 142, No. 1, 157-171 (2014). Reviewer: Marius Ghergu (Dublin) MSC: 35A20 35B65 35K91 35K58 35B44 PDF BibTeX XML Cite \textit{K. Hirata}, Proc. Am. Math. Soc. 142, No. 1, 157--171 (2014; Zbl 1278.35007) Full Text: DOI OpenURL
Pak, Hee Chul Blow-up time for nonlinear heat equations with transcendental nonlinearity. (English) Zbl 1257.35054 J. Appl. Math. 2012, Article ID 202137, 8 p. (2012). MSC: 35B44 35K58 PDF BibTeX XML Cite \textit{H. C. Pak}, J. Appl. Math. 2012, Article ID 202137, 8 p. (2012; Zbl 1257.35054) Full Text: DOI OpenURL
Fujishima, Yohei; Ishige, Kazuhiro Blow-up for a semilinear parabolic equation with large diffusion on \(\mathbf R^N\). II. (English) Zbl 1255.35055 J. Differ. Equations 252, No. 2, 1835-1861 (2012). Reviewer: Marek Fila (Bratislava) MSC: 35B44 35K58 PDF BibTeX XML Cite \textit{Y. Fujishima} and \textit{K. Ishige}, J. Differ. Equations 252, No. 2, 1835--1861 (2012; Zbl 1255.35055) Full Text: DOI OpenURL
Fujishima, Yohei; Ishige, Kazuhiro Blow-up for a semilinear parabolic equation with large diffusion on \(\mathbb R^N\). (English) Zbl 1225.35034 J. Differ. Equations 250, No. 5, 2508-2543 (2011). Reviewer: Marek Fila (Bratislava) MSC: 35B44 35K91 PDF BibTeX XML Cite \textit{Y. Fujishima} and \textit{K. Ishige}, J. Differ. Equations 250, No. 5, 2508--2543 (2011; Zbl 1225.35034) Full Text: DOI OpenURL
Khenissy, S.; Rébaï, Y.; Zaag, H. Continuity of the blow-up profile with respect to initial data and to the blow-up point for a semilinear heat equation. (English) Zbl 1215.35090 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28, No. 1, 1-26 (2011). MSC: 35K58 35B44 35B30 PDF BibTeX XML Cite \textit{S. Khenissy} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28, No. 1, 1--26 (2011; Zbl 1215.35090) Full Text: DOI OpenURL
Fujishima, Yohei; Ishige, Kazuhiro Blow-up set for a semilinear heat equation with small diffusion. (English) Zbl 1204.35054 J. Differ. Equations 249, No. 5, 1056-1077 (2010). Reviewer: Marek Fila (Bratislava) MSC: 35B44 35K57 35B40 35K58 35K15 35B09 PDF BibTeX XML Cite \textit{Y. Fujishima} and \textit{K. Ishige}, J. Differ. Equations 249, No. 5, 1056--1077 (2010; Zbl 1204.35054) Full Text: DOI OpenURL
Bonder, Julian Fernández; Groisman, Pablo; Rossi, Julio D. Continuity of the explosion time in stochastic differential equations. (English) Zbl 1175.60057 Stochastic Anal. Appl. 27, No. 5, 984-999 (2009). MSC: 60H10 34F05 PDF BibTeX XML Cite \textit{J. F. Bonder} et al., Stochastic Anal. Appl. 27, No. 5, 984--999 (2009; Zbl 1175.60057) Full Text: DOI OpenURL
Dejak, Steven; Gang, Zhou; Sigal, Israel Michael; Wang, Shuangcai Blow-up in nonlinear heat equations. (English) Zbl 1180.35130 Adv. Appl. Math. 40, No. 4, 433-481 (2008). Reviewer: Jiaqi Mo (Wuhu) MSC: 35B44 35K57 35K55 35K15 PDF BibTeX XML Cite \textit{S. Dejak} et al., Adv. Appl. Math. 40, No. 4, 433--481 (2008; Zbl 1180.35130) Full Text: DOI arXiv OpenURL
Masmoudi, Nader; Zaag, Hatem Blow-up profile for the complex Ginzburg-Landau equation. (English) Zbl 1158.35016 J. Funct. Anal. 255, No. 7, 1613-1666 (2008). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35B40 35K55 35Q55 PDF BibTeX XML Cite \textit{N. Masmoudi} and \textit{H. Zaag}, J. Funct. Anal. 255, No. 7, 1613--1666 (2008; Zbl 1158.35016) Full Text: DOI OpenURL
Pérez-Llanos, Mayte; Rossi, Julio D. Nontrivial compact blow-up sets of smaller dimension. (English) Zbl 1132.35014 Proc. Am. Math. Soc. 136, No. 2, 593-596 (2008). Reviewer: Peter Lindqvist (Trondheim) MSC: 35B40 35K65 PDF BibTeX XML Cite \textit{M. Pérez-Llanos} and \textit{J. D. Rossi}, Proc. Am. Math. Soc. 136, No. 2, 593--596 (2008; Zbl 1132.35014) Full Text: DOI OpenURL
Fiedler, Bernold; Matano, Hiroshi Global dynamics of blow-up profiles in one-dimensional reaction diffusion equations. (English) Zbl 1132.35048 J. Dyn. Differ. Equations 19, No. 4, 867-893 (2007). Reviewer: Messoud A. Efendiev (Berlin) MSC: 35K57 35B40 42A15 PDF BibTeX XML Cite \textit{B. Fiedler} and \textit{H. Matano}, J. Dyn. Differ. Equations 19, No. 4, 867--893 (2007; Zbl 1132.35048) Full Text: DOI OpenURL
Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D. The blow-up problem for a semilinear parabolic equation with a potential. (English) Zbl 1131.35039 J. Math. Anal. Appl. 335, No. 1, 418-427 (2007). Reviewer: Peter Poláčik (Minneapolis) MSC: 35K55 35K57 35K20 35B05 35K15 35B40 PDF BibTeX XML Cite \textit{C. Cortazar} et al., J. Math. Anal. Appl. 335, No. 1, 418--427 (2007; Zbl 1131.35039) Full Text: DOI arXiv OpenURL
Dickstein, Flávio Blowup stability of solutions of the nonlinear heat equation with a large life span. (English) Zbl 1100.35044 J. Differ. Equations 223, No. 2, 303-328 (2006). Reviewer: Marek Fila (Bratislava) MSC: 35K55 35K57 35B40 35K15 PDF BibTeX XML Cite \textit{F. Dickstein}, J. Differ. Equations 223, No. 2, 303--328 (2006; Zbl 1100.35044) Full Text: DOI OpenURL
Ishige, Kazuhiro; Yagisita, Hiroki Blow-up problems for a semilinear heat equation with large diffusion. (English) Zbl 1072.35096 J. Differ. Equations 212, No. 1, 114-128 (2005). Reviewer: Hanna Marcinkowska (Wrocław) MSC: 35K60 35K55 35B05 35B33 PDF BibTeX XML Cite \textit{K. Ishige} and \textit{H. Yagisita}, J. Differ. Equations 212, No. 1, 114--128 (2005; Zbl 1072.35096) Full Text: DOI OpenURL
Groisman, Pablo; Rossi, Julio D.; Zaag, Hatem On the dependence of the blow-up time with respect to the initial data in a semilinear parabolic problem. (English) Zbl 1036.35025 Commun. Partial Differ. Equations 28, No. 3-4, 737-744 (2003). Reviewer: Marek Fila (Bratislava) MSC: 35B30 35K15 35K20 35K55 35B40 PDF BibTeX XML Cite \textit{P. Groisman} et al., Commun. Partial Differ. Equations 28, No. 3--4, 737--744 (2003; Zbl 1036.35025) Full Text: DOI OpenURL
Zaag, Hatem On the regularity of the blow-up set for semilinear heat equations. (English) Zbl 1012.35039 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19, No. 5, 505-542 (2002). Reviewer: A.Cichocka (Katowice) MSC: 35K55 35K15 35K05 PDF BibTeX XML Cite \textit{H. Zaag}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19, No. 5, 505--542 (2002; Zbl 1012.35039) Full Text: DOI Numdam EuDML OpenURL
Groisman, Pablo; Rossi, Julio D. Asymptotic behaviour for a numerical approximation of a parablic problem with blowing up solutions. (English) Zbl 0991.65090 J. Comput. Appl. Math. 135, No. 1, 135-155 (2001). Reviewer: Dana Petcu (Timişoara) MSC: 65M20 65M12 35K55 35B40 PDF BibTeX XML Cite \textit{P. Groisman} and \textit{J. D. Rossi}, J. Comput. Appl. Math. 135, No. 1, 135--155 (2001; Zbl 0991.65090) Full Text: DOI OpenURL
Ushijima, Takeo K. On the approximation of blow-up time for solutions of nonlinear parabolic equations. (English) Zbl 0981.65106 Publ. Res. Inst. Math. Sci. 36, No. 5, 613-640 (2000). Reviewer: H.Marcinkowska (Wrocław) MSC: 65M12 35K55 65M20 PDF BibTeX XML Cite \textit{T. K. Ushijima}, Publ. Res. Inst. Math. Sci. 36, No. 5, 613--640 (2000; Zbl 0981.65106) Full Text: DOI OpenURL
Zaag, Hatem A remark on the energy blow-up behavior for nonlinear heat equations. (English) Zbl 0971.35042 Duke Math. J. 103, No. 3, 545-556 (2000). Reviewer: A.Cichocka (Katowice) MSC: 35K60 35K20 35K55 35A20 35B40 35B05 PDF BibTeX XML Cite \textit{H. Zaag}, Duke Math. J. 103, No. 3, 545--556 (2000; Zbl 0971.35042) Full Text: DOI OpenURL
Mizoguchi, Noriko; Yanagida, Eiji Critical exponents for the blowup of solutions with sign changes in a semilinear parabolic equation. II. (English) Zbl 0924.35055 J. Differ. Equations 145, No. 2, 295-331 (1998). Reviewer: C.Y.Chan (Lafayette) MSC: 35K15 35B40 35K57 PDF BibTeX XML Cite \textit{N. Mizoguchi} and \textit{E. Yanagida}, J. Differ. Equations 145, No. 2, 295--331 (1998; Zbl 0924.35055) Full Text: DOI OpenURL
Zaag, Hatem Blow-up results for vector-valued nonlinear heat equations with no gradient structure. (English) Zbl 0902.35050 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15, No. 5, 581-622 (1998). Reviewer: Dian Palagachev (Sofia) MSC: 35K40 35B40 35K50 PDF BibTeX XML Cite \textit{H. Zaag}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15, No. 5, 581--622 (1998; Zbl 0902.35050) Full Text: DOI Numdam EuDML OpenURL
Mizoguchi, Noriko; Ninomiya, Hirokazu; Yanagida, Eiji Critical exponent for the bipolar blowup in a semilinear parabolic equation. (English) Zbl 0914.35064 J. Math. Anal. Appl. 218, No. 2, 495-518 (1998). Reviewer: M.A.Vivaldi (Roma) MSC: 35K60 35B40 PDF BibTeX XML Cite \textit{N. Mizoguchi} et al., J. Math. Anal. Appl. 218, No. 2, 495--518 (1998; Zbl 0914.35064) Full Text: DOI OpenURL
Merle, Frank; Zaag, Hatem Stability of the blow-up profile for equations of the type \(u_ t=\Delta u+| u| ^{p-1}u\). (English) Zbl 0872.35049 Duke Math. J. 86, No. 1, 143-195 (1997). Reviewer: D.Palagachev (Sofia) MSC: 35K55 35B40 35K15 PDF BibTeX XML Cite \textit{F. Merle} and \textit{H. Zaag}, Duke Math. J. 86, No. 1, 143--195 (1997; Zbl 0872.35049) Full Text: DOI OpenURL
Filippas, Stathis; Merle, Frank Compactness and single-point blowup of positive solutions on bounded domains. (English) Zbl 0874.35053 Proc. R. Soc. Edinb., Sect. A 127, No. 1, 47-65 (1997). Reviewer: C.Y.Chan (Lafayette) MSC: 35K60 35B40 35K57 PDF BibTeX XML Cite \textit{S. Filippas} and \textit{F. Merle}, Proc. R. Soc. Edinb., Sect. A, Math. 127, No. 1, 47--65 (1997; Zbl 0874.35053) Full Text: DOI OpenURL
Chen, Chao-Nien Infinite time blow-up of solutions to a nonlinear parabolic problem. (English) Zbl 0887.35079 J. Differ. Equations 139, No. 2, 409-427 (1997). MSC: 35K60 35B40 35B05 PDF BibTeX XML Cite \textit{C.-N. Chen}, J. Differ. Equations 139, No. 2, 409--427 (1997; Zbl 0887.35079) Full Text: DOI OpenURL
Etheridge, Alison M. A probabilistic approach to blow-up of a semilinear heat equation. (English) Zbl 0876.60071 Proc. R. Soc. Edinb., Sect. A 126, No. 6, 1235-1245 (1996). Reviewer: A.D.Borisenko (Kiev) MSC: 60J80 60H15 35K99 PDF BibTeX XML Cite \textit{A. M. Etheridge}, Proc. R. Soc. Edinb., Sect. A, Math. 126, No. 6, 1235--1245 (1996; Zbl 0876.60071) Full Text: DOI OpenURL
Herrero, M. A.; Velázquez, J. J. L. Generic behaviour of one-dimensional blow up patterns. (English) Zbl 0798.35081 Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 19, No. 3, 381-450 (1992). Reviewer: L.Recke (Berlin) MSC: 35K60 35B40 35K15 PDF BibTeX XML Cite \textit{M. A. Herrero} and \textit{J. J. L. Velázquez}, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 19, No. 3, 381--450 (1992; Zbl 0798.35081) Full Text: Numdam EuDML OpenURL