Developable surfaces in contemporary architecture. (English) Zbl 1149.53006

Summary: Developable surfaces (tangential developables, in special cases cylinders and cones) are ruled surfaces with vanishing Gaussian curvature and can therefore be unfolded to the plane without distortions. In this article we will survey and discuss examples of the use of developable surfaces in contemporary architecture. We also discuss software for aiding architects, designers, engineers and artists to explore their ideas for the use of developable surfaces for such purposes.


53A05 Surfaces in Euclidean and related spaces
53A04 Curves in Euclidean and related spaces
00A69 General applied mathematics


Open Geometry
Full Text: DOI


[1] DOI: 10.1006/gmip.1999.0487 · Zbl 0978.68576 · doi:10.1006/gmip.1999.0487
[2] Farin GE, Curves and Surfaces for CAGD (2001)
[3] Glaeser G, Mathematical Visualization pp 89– (1998)
[4] Glaeser G, Handbook of Geometric Programming Using Open Geometry GL (2002) · Zbl 1008.68001
[5] Glaeser G, Geometrie und ihre Anwendungen in Kunst, Natur und Technik (2005)
[6] DOI: 10.1145/1015706.1015711 · doi:10.1145/1015706.1015711
[7] Guggenheimer HW, Differential geometry (1963)
[8] Hoschek J, CAD 30 pp 757– (1998)
[9] Kruppa E, Analytische und konstruktive Differentialgeometrie (1957)
[10] Pottmann H, Computational Line Geometry (2001)
[11] Pottmann H, CAGD 12 pp 513– (1995)
[12] Strubecker K, Differentialgeometrie I–III (1964)
[13] DOI: 10.1007/BF01299052 · Zbl 0105.14802 · doi:10.1007/BF01299052
[14] Wunderlich W, Bibliographisches Institut Mannheim 133 (1967)
[15] Ward J, The artifacts of R. Buckminster Fuller (1984)
[16] Locher JL, The Magic of M.C. Escher (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.