×

Beyond tail median and conditional tail expectation: extreme risk estimation using tail \(L^p\)-optimization. (English) Zbl 1454.62143

Summary: The conditional tail expectation (CTE) is an indicator of tail behavior that takes into account both the frequency and magnitude of a tail event. However, the asymptotic normality of its empirical estimator requires that the underlying distribution possess a finite variance; this can be a strong restriction in actuarial and financial applications. A valuable alternative is the median shortfall (MS), although it only gives information about the frequency of a tail event. We construct a class of tail \(L^p\)-medians encompassing the MS and CTE. For \(p\) in \((1,2)\), a tail \(L^p\)-median depends on both the frequency and magnitude of tail events, and its empirical estimator is, within the range of the data, asymptotically normal under a condition weaker than a finite variance. We extrapolate this estimator and another technique to extreme levels using the heavy-tailed framework. The estimators are showcased on a simulation study and on real fire insurance data.

MSC:

62G32 Statistics of extreme values; tail inference
60F17 Functional limit theorems; invariance principles
62P20 Applications of statistics to economics
Full Text: DOI

References:

[1] Acerbi, C., & Tasche, D. (2002). On the coherence of expected shortfall. Journal of Banking & Finance, 26, 1487-1503.
[2] Artzner, P., Delbaen, F., Eber, J.‐M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203-228. · Zbl 0980.91042
[3] Basel Committee on Banking Supervision (2013). Fundamental review of the trading book: A revised market risk framework.
[4] Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of extremes: Theory and applications. Chichester, UK: John Wiley & Sons. · Zbl 1070.62036
[5] Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular variation. Cambridge, UK: Cambridge University Press. · Zbl 0617.26001
[6] Borisov, I. S., & Baklanov, E. A. (2001). Probability inequalities for generalized L‐statistics. Siberian Mathematical Journal, 42, 217-231. · Zbl 0986.60014
[7] Brazauskas, V., Jones, B. L., Puri, M. L., & Zitikis, R. (2008). Estimating conditional tail expectation with actuarial applications in view. Journal of Statistical Planning and Inference, 138, 3590-3604. · Zbl 1152.62027
[8] Cai, J.‐J., Einmahl, J. H. J., deHaan, L., & Zhou, C. (2015). Estimation of the marginal expected shortfall: The mean when a related variable is extreme. Journal of the Royal Statistical Society: Series B, 77, 417-442. · Zbl 1414.91433
[9] Chen, Z. (1996). Conditional L_p‐quantiles and their application to testing of symmetry in non‐parametric regression. Statistics & Probability Letters, 29, 107-115. · Zbl 0865.62021
[10] Daníelsson, J., Jorgensen, B. N., Samorodnitsky, G., Sarma, M., & deVries, C. G. (2013). Fat tails, VaR and subadditivity. Journal of Econometrics, 172, 283-291. · Zbl 1443.62343
[11] Daouia, A., Girard, S., & Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles. Journal of the Royal Statistical Society: Series B, 80, 263-292. · Zbl 1383.62235
[12] Daouia, A., Girard, S., & Stupfler, G. (2019). Extreme M‐quantiles as risk measures: From L^1 to L^p optimization. Bernoulli, 25, 264-309. · Zbl 1442.62106
[13] deHaan, L., & Ferreira, A. (2006). Extreme value theory: An introduction. New York, NY: Springer. · Zbl 1101.62002
[14] El Methni, J., Gardes, L., & Girard, S. (2014). Nonparametric estimation of extreme risks from conditional heavy‐tailed distributions. Scandinavian Journal of Statistics, 41, 988-1012. · Zbl 1305.62199
[15] El Methni, J., Gardes, L., & Girard, S. (2018). Kernel estimation of extreme regression risk measures. Electronic Journal of Statistics, 12, 359-398. · Zbl 1388.62141
[16] El Methni, J., & Stupfler, G. (2017). Extreme versions of Wang risk measures and their estimation for heavy‐tailed distributions. Statistica Sinica, 27, 907-930. · Zbl 1362.62183
[17] El Methni, J., & Stupfler, G. (2018). Improved estimators of extreme Wang distortion risk measures for very heavy‐tailed distributions. Econometrics and Statistics, 6, 129-148.
[18] Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extremal events for insurance and finance. Berlin, Heidelberg: Springer. · Zbl 0873.62116
[19] Embrechts, P., Lambrigger, D. P., & Wüthrich, M. V. (2009). Multivariate extremes and the aggregation of dependent risks: Examples and counter‐examples. Extremes, 12, 107-127. · Zbl 1224.91057
[20] Emmer, S., Kratz, M., & Tasche, D. (2015). What is the best risk measure in practice? A comparison of standard measures. Journal of Risk, 18, 31-60.
[21] Gardes, L., & Stupfler, G. (2015). Estimating extreme quantiles under random truncation. TEST, 24, 207-227. · Zbl 1328.62206
[22] Geyer, C. J.. (1996). On the asymptotics of convex stochastic optimization. Unpublished manuscript.
[23] Gneiting, T. (2011). Making and evaluating point forecasts. Journal of the American Statistical Association, 106, 746-762. · Zbl 1232.62028
[24] Gong, J., Li, Y., Peng, L., & Yao, Q. (2015). Estimation of extreme quantiles for functions of dependent random variables. Journal of the Royal Statistical Society: Series B, 77, 1001-1024. · Zbl 1414.62160
[25] Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. Annals of Statistics, 3, 1163-1174. · Zbl 0323.62033
[26] Hill, J. B. (2013). Least tail‐trimmed squares for infinite variance autoregressions. Journal of Time Series Analysis, 34, 168-186. · Zbl 1273.62064
[27] Hill, J. B. (2015). Expected shortfall estimation and Gaussian inference for infinite variance time series. Journal of Financial Econometrics, 13, 1-44.
[28] Hua, L., & Joe, H. (2011). Second order regular variation and conditional tail expectation of multiple risks. Insurance: Mathematics & Economics, 49, 537-546. · Zbl 1228.91039
[29] International Monetary Fund. (2014). Canada: Financial sector assessment program-insurance core principles-detailed assessment of observance. Washington, DC: International Monetary Fund.
[30] Knight, K. (1998). Limiting distributions for L_1 regression estimators under general conditions. Annals of Statistics, 26, 755-770. · Zbl 0929.62021
[31] Knight, K. (1999). Epi‐convergence in distribution and stochastic equi‐semicontinuity (Technical Report). University of Toronto. Retrieved from http://www.utstat.toronto.edu/keith/EPFL/equi.ps.
[32] Koenker, R. (2005). Quantile regression. Cambridge, England: Cambridge University Press. · Zbl 1111.62037
[33] Koenker, R., & Bassett, G. S. (1978). Regression quantiles. Econometrica, 46, 33-50. · Zbl 0373.62038
[34] Kou, S., & Peng, X. (2016). On the measurement of economic tail risk. Operations Research, 64, 1056-1072. · Zbl 1378.91101
[35] Kou, S., Peng, X., & Heyde, C. C. (2013). External risk measures and Basel accords. Mathematics of Operations Research, 38, 393-417. · Zbl 1297.91089
[36] Ling, S. (2005). Self‐weighted least absolute deviation estimation for infinite variance autoregressive models. Journal of the Royal Statistical Society: Series B, 67, 381-393. · Zbl 1069.62069
[37] Newey, W. K., & Powell, J. L. (1987). Asymmetric least squares estimation and testing. Econometrica, 55, 819-847. · Zbl 0625.62047
[38] Organisation for Economic Co‐operation and Development. (2016). Life annuity products and their guarantees. Paris, France: OECD Publishing.
[39] Resnick, S. (2007). Heavy‐tail phenomena: Probabilistic and statistical modeling. New York, NY: Springer. · Zbl 1152.62029
[40] Rockafellar, R. T., & Uryasev, S. (2002). Conditional value‐at‐risk for general loss distributions. Journal of Banking & Finance, 26, 1443-1471.
[41] Tasche, D. (2002). Expected shortfall and beyond. Journal of Banking & Finance, 26, 1519-1533. · Zbl 1119.62106
[42] Tasche, D. (2008). Capital allocation to business units and sub‐portfolios: The Euler principle. In A.Resti (ed.) (Ed.), Pillar II in the new Basel accord: The challenge of economic capital (pp. 423-453). London, England: Risk Books.
[43] Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest observations. Journal of the American Statistical Association, 73, 812-815. · Zbl 0397.62034
[44] Wüthrich, M., & Merz, M. (2013). Financial modeling, actuarial valuation and solvency in insurance. Berlin, Germany: Springer‐Verlag. · Zbl 1268.91003
[45] Yang, F. (2015). First‐ and second‐order asymptotics for the tail distortion risk measure of extreme risks. Communications in Statistics—Theory and Methods, 44, 520-532. · Zbl 1310.91079
[46] Zhu, L., & Li, H. (2012). Tail distortion risk and its asymptotic analysis. Insurance: Mathematics & Economics, 51, 115-121. · Zbl 1284.91283
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.