×

Testing for normality in any dimension based on a partial differential equation involving the moment generating function. (English) Zbl 1465.62104

Summary: We use a system of first-order partial differential equations that characterize the moment generating function of the \(d\)-variate standard normal distribution to construct a class of affine invariant tests for normality in any dimension. We derive the limit null distribution of the resulting test statistics, and we prove consistency of the tests against general alternatives. In the case \(d> 1\), a certain limit of these tests is connected with two measures of multivariate skewness. The new tests show strong power performance when compared to well-known competitors, especially against heavy-tailed distributions, and they are illustrated by means of a real data set.

MSC:

62H15 Hypothesis testing in multivariate analysis
35Q62 PDEs in connection with statistics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Azzalini, A., A class of distributions which includes the normal ones, Scandinavian Journal of Statistics, 12, 171-178 (1985) · Zbl 0581.62014
[2] Azzalini, A. (2017). The R package ’sn’: The skew-normal and skew-t distributions. R package version 1.5-0. http://azzalini.stat.unipd.it/SN.
[3] Barndorff-Nielsen, O., On the behaviour of extreme order statistics, Annals of Mathematical Statistics, 34, 992-1002 (1963) · Zbl 0119.15004 · doi:10.1214/aoms/1177704022
[4] Baringhaus, L.; Henze, N., Limit distributions for measures of multivariate skewness and kurtosis based on projections, Journal of Multivariate Analysis, 38, 51-69 (1991) · Zbl 0728.62023 · doi:10.1016/0047-259X(91)90031-V
[5] Baringhaus, L.; Henze, N., Limit distributions for Mardia’s measure of multivariate skewness, Annals of Statistics, 20, 1889-1902 (1992) · Zbl 0767.62041 · doi:10.1214/aos/1176348894
[6] Becker, M., Klößner, S. (2017). PearsonDS: Pearson Distribution System. R package version, 1. https://CRAN.R-project.org/package=PearsonDS.
[7] Bowman, AW; Foster, PJ, Adaptive smoothing and density based tests of multivariate normality, Journal of the American Statistical Association, 88, 529-537 (1993) · Zbl 0775.62086 · doi:10.1080/01621459.1993.10476304
[8] Caldana, R.; Fusai, G.; Gnoatto, A.; Grasselli, M., General closed-form basket option pricing bounds, Quantitative Finance, 16, 535-554 (2016) · Zbl 1468.91162 · doi:10.1080/14697688.2015.1073854
[9] Eaton, ML; Perlman, MD, The non-singularity of generalized sample covariance matrices, Annals of Statistics, 1, 710-717 (1973) · Zbl 0261.62037 · doi:10.1214/aos/1176342465
[10] Farrell, PJ; Salibian-Barrera, M.; Naczk, K., On tests for multivariate normality and associated simulation studies, Journal of Statistical Computation and Simulation, 75, 93-107 (2007)
[11] Fletcher, T. D. (2012). QuantPsyc: Quantitative psychology tools. R package version, 1, 5. https://CRAN.R-project.org/package=QuantPsyc.
[12] Gross, J., Ligges, U. (2015). nortest: Tests for normality. R package version 1.0-4. https://CRAN.R-project.org/package=nortest.
[13] Henze, N., On Mardia’s kurtosis test for multivariate normality, Communications in Statistics—Theory and Methods, 23, 1031-1045 (1994) · Zbl 0825.62136 · doi:10.1080/03610929408831303
[14] Henze, N., The asymptotic behavior of a variant of multivariate kurtosis, Communications in Statistics—Theory and Methods, 23, 1047-1061 (1994) · Zbl 0825.62141 · doi:10.1080/03610929408831304
[15] Henze, N., Extreme smoothing and testing for multivariate normality, Statistics & Probability Letters, 35, 203-213 (1997) · Zbl 0955.62060 · doi:10.1016/S0167-7152(97)00015-1
[16] Henze, N., Invariant tests for multivariate normality: A critical review, Statistical Papers, 43, 467-506 (2002) · Zbl 1008.62060 · doi:10.1007/s00362-002-0119-6
[17] Henze, N., Jiménez-Gamero, M.D. (2018). A new class of tests for multinormality with i.i.d. and GARCH data based on the empirical moment generating function. TEST. 10.1007/s11749-018-0589-z. · Zbl 1420.62252
[18] Henze, N., Koch, S. (2017). On a test of normality based on the empirical moment generating function. Statistical Papers. 10.1007/s00362-017-0923-7. · Zbl 1437.62094
[19] Henze, N.; Wagner, T., A new approach to the BHEP tests for multivariate normality, Journal of Multivariate Analysis, 62, 1-23 (1997) · Zbl 0874.62043 · doi:10.1006/jmva.1997.1684
[20] Henze, N.; Zirkler, B., A class of invariant consistent tests for multivariate normality, Communications in Statistics Theory and Methods, 19, 3595-3617 (1990) · Zbl 0738.62068 · doi:10.1080/03610929008830400
[21] Henze, N.; Jiménez-Gamero, MD; Meintanis, SG, Characterization of multinormality and corresponding tests of fit, including for GARCH models, Econometric Theory, 35, 3, 510-546 (2018) · Zbl 1419.62101 · doi:10.1017/S0266466618000154
[22] Joenssen, DW; Vogel, J., A power study of goodness-of-fit tests for multivariate normality implemented in R, Journal of Statistical Computation and Simulation, 84, 1055-1078 (2014) · Zbl 1453.62522 · doi:10.1080/00949655.2012.739620
[23] Kallenberg, O., Foundations of modern probability (2002), New York: Springer, New York · Zbl 0996.60001
[24] Korkmaz, S.; Goksuluk, D.; Zararsiz, G., MVN: An R package for assessing multivariate normality, The R Journal, 6, 2, 151-162 (2014) · doi:10.32614/RJ-2014-031
[25] Kundu, D.; Majumdar, S.; Mukherjee, K., Central limit theorems revisited, Statistics & Probability Letters, 47, 265-275 (2000) · Zbl 0963.60016 · doi:10.1016/S0167-7152(99)00164-9
[26] Mardia, KV, Measures of multivariate skewness and kurtosis with applications, Biometrika, 57, 519-530 (1970) · Zbl 0214.46302 · doi:10.1093/biomet/57.3.519
[27] Mecklin, CJ; Mundfrom, DJ, A Monte Carlo comparison of Type I and Type II error rates of tests of multivariate normality, Journal of Statistical Computation and Simulation, 75, 93-107 (2005) · Zbl 1096.62058 · doi:10.1080/0094965042000193233
[28] Móri, TF; Rohatgi, VK; Székely, GJ, On multivariate skewness and kurtosis, Theory of Probability and its Applications, 38, 547-551 (1993) · Zbl 0807.60020 · doi:10.1137/1138055
[29] Core Team, R. (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
[30] Rizzo, M.L., Székely, G.J. (2016). E-Statistics: Multivariate inference via the energy of data. R package version 1.7-0. https://CRAN.R-project.org/package=energy.
[31] Ruckdeschel, P.; Kohl, M.; Stabla, T.; Camphausen, F., S4 classes for distributions, Journal of Statistical Computation and Simulation, 35, 1-27 (2006) · Zbl 1084.62017 · doi:10.1080/03610910500416231
[32] Székely, GJ; Rizzo, ML, A new test for multivariate normality, Journal of Multivariate Analysis, 93, 58-80 (2005) · Zbl 1087.62070 · doi:10.1016/j.jmva.2003.12.002
[33] Trapletti, A., Hornik, K. (2017). tseries: Time series analysis and computational finance. R package version 0.10-40. https://CRAN.R-project.org/package=tseries.
[34] Volkmer, H., A characterization of the normal distribution, Journal of Statistical Theory and Applications, 13, 83-85 (2014) · doi:10.2991/jsta.2014.13.1.7
[35] Zghoul, AA, A goodness of fit test for normality based on the empirical moment generating function, Communications in Statistics—Simulation and Computation, 39, 1304-1929 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.