×

Flat holography and Carrollian fluids. (English) Zbl 1395.81210

Summary: We show that a holographic description of four-dimensional asymptotically locally flat spacetimes is reached smoothly from the zero-cosmological-constant limit of anti-de Sitter holography. To this end, we use the derivative expansion of fluid/gravity correspondence. From the boundary perspective, the vanishing of the bulk cosmological constant appears as the zero velocity of light limit. This sets how Carrollian geometry emerges in flat holography. The new boundary data are a two-dimensional spatial surface, identified with the null infinity of the bulk Ricci-flat spacetime, accompanied with a Carrollian time and equipped with a Carrollian structure, plus the dynamical observables of a conformal Carrollian fluid. These are the energy, the viscous stress tensors and the heat currents, whereas the Carrollian geometry is gathered by a two-dimensional spatial metric, a frame connection and a scale factor. The reconstruction of Ricci-flat spacetimes from Carrollian boundary data is conducted with a flat derivative expansion, resummed in a closed form in Eddington-Finkelstein gauge under further integrability conditions inherited from the ancestor anti-de Sitter set-up. These conditions are hinged on a duality relationship among fluid friction tensors and Cotton-like geometric data. We illustrate these results in the case of conformal Carrollian perfect fluids and Robinson-Trautman viscous hydrodynamics. The former are dual to the asymptotically flat Kerr-Taub-NUT family, while the latter leads to the homonymous class of algebraically special Ricci-flat spacetimes.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C57 Black holes
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] C. Fefferman and C.R. Graham, Conformal invariants, in Elie Cartan et les mathématiques d’aujourd’hui, AstérisqueHors série Soc. Math. (1985) 95.
[2] Fefferman, C.; Graham, CR, The ambient metric, Ann. Math. Stud., 178, 1, (2011) · Zbl 1243.53004
[3] Bhattacharyya, S.; Hubeny, VE; Minwalla, S.; Rangamani, M., Nonlinear fluid dynamics from gravity, JHEP, 02, 045, (2008) · doi:10.1088/1126-6708/2008/02/045
[4] V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, in Black holes in higher dimensions, G. Horowitz ed., Cambridge University Press, Cambridge U.K. (2012), pp. 348-383 [arXiv:1107.5780] [INSPIRE]. · Zbl 1263.83009
[5] Haack, M.; Yarom, A., Nonlinear viscous hydrodynamics in various dimensions using AdS/CFT, JHEP, 10, 063, (2008) · Zbl 1245.81172 · doi:10.1088/1126-6708/2008/10/063
[6] Bhattacharyya, S.; Loganayagam, R.; Mandal, I.; Minwalla, S.; Sharma, A., Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP, 12, 116, (2008) · Zbl 1329.83103 · doi:10.1088/1126-6708/2008/12/116
[7] Kovtun, P., Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys., A 45, 473001, (2012) · Zbl 1348.83039
[8] Romatschke, P., New developments in relativistic viscous hydrodynamics, Int. J. Mod. Phys., E 19, 1, (2010) · doi:10.1142/S0218301310014613
[9] M.M. Caldarelli, R.G. Leigh, A.C. Petkou, P.M. Petropoulos, V. Pozzoli and K. Siampos, Vorticity in holographic fluids, PoS(CORFU2011)076 [arXiv:1206.4351] [INSPIRE].
[10] Mukhopadhyay, A.; Petkou, AC; Petropoulos, PM; Pozzoli, V.; Siampos, K., Holographic perfect fluidity, cotton energy-momentum duality and transport properties, JHEP, 04, 136, (2014) · doi:10.1007/JHEP04(2014)136
[11] Petropoulos, PM, Gravitational duality, topologically massive gravity and holographic fluids, Lect. Notes Phys., 892, 331, (2015) · doi:10.1007/978-3-319-10070-8_13
[12] Gath, J.; Mukhopadhyay, A.; Petkou, AC; Petropoulos, PM; Siampos, K., Petrov classification and holographic reconstruction of spacetime, JHEP, 09, 005, (2015) · Zbl 1388.83245 · doi:10.1007/JHEP09(2015)005
[13] P.M. Petropoulos and K. Siampos, Integrability, Einstein spaces and holographic fluids, in proceedings of the Workshop in honour of the 65th birthday of Professor Philippe Spindel, Mons, Belgium, 4-5 June 2015, N. Boulanger and S. Detournay eds., Université de Mons, Mons Belgium (2017) [arXiv:1510.06456] [INSPIRE].
[14] A.C. Petkou, P.M. Petropoulos and K. Siampos, Geroch group for Einstein spaces and holographic integrability, PoS(PLANCK 2015)104 [arXiv:1512.04970] [INSPIRE].
[15] Antoniadis, I.; Derendinger, J-P; Petropoulos, PM; Siampos, K., isometries, gaugings and\( \mathcal{N} \) = 2 supergravity decoupling, JHEP, 11, 169, (2016) · Zbl 1390.83361 · doi:10.1007/JHEP11(2016)169
[16] Alexandrov, S.; Banerjee, S.; Longhi, P., Rigid limit for hypermultiplets and five-dimensional gauge theories, JHEP, 01, 156, (2018) · Zbl 1384.83047 · doi:10.1007/JHEP01(2018)156
[17] Damour, T., Black hole eddy currents, Phys. Rev., D 18, 3598, (1978)
[18] T. Damour, Quelques propriétés mécaniques, électromagnétiques, thermodynamiques et quantiques des trous noirs, Thèse de Doctorat d’Etat, Université Pierre et Marie Curie, Paris VI, Paris France (1979) and online pdf version at http://www.ihes.fr/∼damour/Articles/these1.pdf.
[19] Haro, S.; Skenderis, K.; Solodukhin, SN, Gravity in warped compactifications and the holographic stress tensor, Class. Quant. Grav., 18, 3171, (2001) · Zbl 0999.83060 · doi:10.1088/0264-9381/18/16/307
[20] Bredberg, I.; Keeler, C.; Lysov, V.; Strominger, A., From Navier-Stokes to Einstein, JHEP, 07, 146, (2012) · Zbl 1397.83044 · doi:10.1007/JHEP07(2012)146
[21] Compère, G.; McFadden, P.; Skenderis, K.; Taylor, M., The holographic fluid dual to vacuum Einstein gravity, JHEP, 07, 050, (2011) · Zbl 1298.83013 · doi:10.1007/JHEP07(2011)050
[22] Compère, G.; McFadden, P.; Skenderis, K.; Taylor, M., The relativistic fluid dual to vacuum Einstein gravity, JHEP, 03, 076, (2012) · Zbl 1309.81150 · doi:10.1007/JHEP03(2012)076
[23] Caldarelli, MM; Camps, J.; Goutéraux, B.; Skenderis, K., AdS/Ricci-flat correspondence, JHEP, 04, 071, (2014) · doi:10.1007/JHEP04(2014)071
[24] Pinzani-Fokeeva, N.; Taylor, M., Towards a general fluid/gravity correspondence, Phys. Rev., D 91, (2015)
[25] Eling, C.; Meyer, A.; Oz, Y., The relativistic Rindler hydrodynamics, JHEP, 05, 116, (2012) · doi:10.1007/JHEP05(2012)116
[26] Arcioni, G.; Dappiaggi, C., Exploring the holographic principle in asymptotically flat space-times via the BMS group, Nucl. Phys., B 674, 553, (2003) · Zbl 1066.83513 · doi:10.1016/j.nuclphysb.2003.09.051
[27] Arcioni, G.; Dappiaggi, C., Holography in asymptotically flat space-times and the BMS group, Class. Quant. Grav., 21, 5655, (2004) · Zbl 1065.83018 · doi:10.1088/0264-9381/21/23/022
[28] C. Dappiaggi, V. Moretti and N. Pinamonti, Rigorous steps towards holography in asymptotically flat spacetimes, Rev. Math. Phys.18 (2006) 349 [gr-qc/0506069] [INSPIRE]. · Zbl 1107.81040
[29] Boer, J.; Solodukhin, SN, A holographic reduction of Minkowski space-time, Nucl. Phys., B 665, 545, (2003) · Zbl 1038.83030
[30] Newman, ET; Penrose, R., An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys., 3, 566, (1962) · Zbl 0108.40905 · doi:10.1063/1.1724257
[31] T.M. Adamo, E.T. Newman and C.N. Kozameh, Null Geodesic Congruences, Asymptotically Flat Space-Times and Their Physical Interpretation, Living Rev. Rel.12 (2009) 6 [Living Rev. Rel.15 (2012) 1] [arXiv:0906.2155] [INSPIRE]. · Zbl 1215.83002
[32] T. Mädler and J. Winicour, Bondi-Sachs Formalism, Scholarpedia11 (2016) 33528 [arXiv:1609.01731] [INSPIRE]. · Zbl 1388.83496
[33] Bagchi, A.; Gopakumar, R., Galilean conformal algebras and AdS/CFT, JHEP, 07, 037, (2009) · doi:10.1088/1126-6708/2009/07/037
[34] Bagchi, A., Correspondence between asymptotically flat spacetimes and nonrelativistic conformal field theories, Phys. Rev. Lett., 105, 171601, (2010) · doi:10.1103/PhysRevLett.105.171601
[35] Bagchi, A.; Fareghbal, R., BMS/GCA redux: towards flatspace holography from non-relativistic symmetries, JHEP, 10, 092, (2012) · doi:10.1007/JHEP10(2012)092
[36] Barnich, G.; Troessaert, C., Aspects of the BMS/CFT correspondence, JHEP, 05, 062, (2010) · Zbl 1287.83043 · doi:10.1007/JHEP05(2010)062
[37] Barnich, G.; Gomberoff, A.; Gonzalez, HA, The flat limit of three dimensional asymptotically anti-de Sitter spacetimes, Phys. Rev., D 86, (2012)
[38] Bagchi, A.; Basu, R.; Grumiller, D.; Riegler, M., Entanglement entropy in Galilean conformal field theories and flat holography, Phys. Rev. Lett., 114, 111602, (2015) · doi:10.1103/PhysRevLett.114.111602
[39] Hartong, J., holographic reconstruction of 3D flat space-time, JHEP, 10, 104, (2016) · Zbl 1390.83019 · doi:10.1007/JHEP10(2016)104
[40] Jensen, K.; Karch, A., Revisiting non-relativistic limits, JHEP, 04, 155, (2015) · Zbl 1388.83355 · doi:10.1007/JHEP04(2015)155
[41] Baghchesaraei, O.; Fareghbal, R.; Izadi, Y., Flat-space holography and stress tensor of Kerr black hole, Phys. Lett., B 760, 713, (2016) · Zbl 1398.83038 · doi:10.1016/j.physletb.2016.07.062
[42] He, T.; Mitra, P.; Strominger, A., 2D Kac-Moody symmetry of 4D Yang-Mills theory, JHEP, 10, 137, (2016) · Zbl 1390.81630 · doi:10.1007/JHEP10(2016)137
[43] Kapec, D.; Mitra, P.; Raclariu, A-M; Strominger, A., 2D stress tensor for 4D gravity, Phys. Rev. Lett., 119, 121601, (2017) · doi:10.1103/PhysRevLett.119.121601
[44] Pasterski, S.; Shao, S-H; Strominger, A., Flat space amplitudes and conformal symmetry of the celestial sphere, Phys. Rev., D 96, (2017)
[45] D. Kapec and P. Mitra, A d-Dimensional Stress Tensor for Mink_{\(d\)+2}Gravity, JHEP05 (2018) 186 [arXiv:1711.04371] [INSPIRE]. · Zbl 1391.83095
[46] R. Fareghbal and I. Mohammadi, Flat-space Holography and Correlators of Robinson-Trautman Stress tensor, arXiv:1802.05445 [INSPIRE].
[47] J.-M. Lévy-Leblond, Une nouvelle limite non-relativiste du groupe de Poincaré, Ann. Inst. Henri PoincaréIII (1965) 1 and online at https://eudml.org/doc/75509.
[48] Duval, C.; Gibbons, GW; Horvathy, PA; Zhang, PM, Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav., 31, (2014) · Zbl 1295.83006 · doi:10.1088/0264-9381/31/8/085016
[49] Duval, C.; Gibbons, GW; Horvathy, PA, Conformal carroll groups and BMS symmetry, Class. Quant. Grav., 31, (2014) · Zbl 1291.83084 · doi:10.1088/0264-9381/31/9/092001
[50] Duval, C.; Horvathy, PA, Non-relativistic conformal symmetries and Newton-Cartan structures, J. Phys., A 42, 465206, (2009) · Zbl 1180.37078
[51] Duval, C.; Gibbons, GW; Horvathy, PA, Conformal carroll groups, J. Phys., A 47, 335204, (2014) · Zbl 1297.83028
[52] L. Ciambelli, C. Marteau, A.C. Petkou, P.M. Petropoulos and K. Siampos, Covariant Galilean versus Carrollian hydrodynamics from relativistic fluids, accepted for publication in Class. Quant. Grav. (2018), arXiv:1802.05286 [https://doi.org/10.1088/1361-6382/aacf1a] [INSPIRE]. · Zbl 1287.83043
[53] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond.A 269 (1962) 21 [INSPIRE]. · Zbl 0106.41903
[54] Sachs, R., Asymptotic symmetries in gravitational theory, Phys. Rev., 128, 2851, (1962) · Zbl 0114.21202 · doi:10.1103/PhysRev.128.2851
[55] Barnich, G.; Troessaert, C., symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett., 105, 111103, (2010) · doi:10.1103/PhysRevLett.105.111103
[56] A. Ashtekar, Geometry and Physics of Null Infinity, in One hundred years of general relativity, L. Bieri and S.T. Yau eds., International Press, Boston U.S.A. (2015), p. 99 [arXiv:1409.1800] [INSPIRE].
[57] Bagchi, A.; Chakrabortty, S.; Parekh, P., Tensionless strings from worldsheet symmetries, JHEP, 01, 158, (2016) · Zbl 1388.81476 · doi:10.1007/JHEP01(2016)158
[58] Cardona, B.; Gomis, J.; Pons, JM, Dynamics of carroll strings, JHEP, 07, 050, (2016) · Zbl 1390.83331 · doi:10.1007/JHEP07(2016)050
[59] Penna, RF, BMS invariance and the membrane paradigm, JHEP, 03, 023, (2016) · Zbl 1388.83496 · doi:10.1007/JHEP03(2016)023
[60] Penna, RF, Near-horizon BMS symmetries as fluid symmetries, JHEP, 10, 049, (2017) · Zbl 1383.83075 · doi:10.1007/JHEP10(2017)049
[61] Anderson, MT, Geometric aspects of the AdS/CFT correspondence, IRMA Lect. Math. Theor. Phys., 8, 1, (2005) · Zbl 1071.81553
[62] Papadimitriou, I.; Skenderis, K., Thermodynamics of asymptotically locally AdS spacetimes, JHEP, 08, 004, (2005) · doi:10.1088/1126-6708/2005/08/004
[63] S. Fischetti, W. Kelly and D. Marolf, Conserved charges in asymptotically (locally) AdS spacetimes, in Springer Handbook of spacetime, A. Ashtekar and V. Petkov eds., Springer (2014), p. 381 [arXiv:1211.6347] [INSPIRE].
[64] Ashtekar, A.; Das, S., Asymptotically anti-de Sitter space-times: conserved quantities, Class. Quant. Grav., 17, l17, (2000) · Zbl 0943.83023 · doi:10.1088/0264-9381/17/2/101
[65] L.D. Landau and E.M. Lifchitz, Physique Théorique. Volume 6: Mécanique des fluides, MIR, Moscow Russia (1969).
[66] L. Ciambelli, A.C. Petkou, P.M. Petropoulos and K. Siampos, The Robinson-Trautman spacetime and its holographic fluid, PoS(CORFU2016)076 [arXiv:1707.02995] [INSPIRE]. · Zbl 1309.81150
[67] M. Humbert, Holographic reconstruction in higher dimension, internship report, École normale supérieure, École polytechnique, Paris France (2017).
[68] B. Coll, J. Llosa and D. Soler, Three-dimensional metrics as deformations of a constant curvature metric, Gen. Rel. Grav.34 (2002) 269 [gr-qc/0104070] [INSPIRE]. · Zbl 1008.53039
[69] Mansi, DS; Petkou, AC; Tagliabue, G., gravity in the 3 + 1-split formalism I: holography as an initial value problem, Class. Quant. Grav., 26, (2009) · Zbl 1160.83306 · doi:10.1088/0264-9381/26/4/045008
[70] Mansi, DS; Petkou, AC; Tagliabue, G., gravity in the 3 + 1-split formalism II: self-duality and the emergence of the gravitational Chern-Simons in the boundary, Class. Quant. Grav., 26, (2009) · Zbl 1160.83307 · doi:10.1088/0264-9381/26/4/045009
[71] S. de Haro, Dual Gravitons in AdS_{4}/CFT_{3}and the Holographic Cotton Tensor, JHEP01 (2009) 042 [arXiv:0808.2054] [INSPIRE]. · Zbl 1243.83068
[72] Bakas, I., energy-momentum/cotton tensor duality for AdS_{4}black holes, JHEP, 01, 003, (2009) · Zbl 1243.83032 · doi:10.1088/1126-6708/2009/01/003
[73] Miskovic, O.; Olea, R., Topological regularization and self-duality in four-dimensional anti-de Sitter gravity, Phys. Rev., D 79, 124020, (2009)
[74] Plebanski, JF; Demianski, M., Rotating, charged, and uniformly accelerating mass in general relativity, Annals Phys., 98, 98, (1976) · Zbl 0334.53037 · doi:10.1016/0003-4916(76)90240-2
[75] Bernardi de Freitas, G.; Reall, HS, Algebraically special solutions in AdS/CFT, JHEP, 06, 148, (2014) · Zbl 1333.83009 · doi:10.1007/JHEP06(2014)148
[76] Bakas, I.; Skenderis, K., non-equilibrium dynamics and AdS_{4}Robinson-trautman, JHEP, 08, 056, (2014) · doi:10.1007/JHEP08(2014)056
[77] Bakas, I.; Skenderis, K.; Withers, B., Self-similar equilibration of strongly interacting systems from holography, Phys. Rev., D 93, 101902, (2016)
[78] K. Skenderis and B. Withers, Robinson-Trautman spacetimes and gauge/gravity duality, PoS(CORFU2016)097 [arXiv:1703.10865] [INSPIRE].
[79] Fareghbal, R.; Naseh, A.; Rouhani, S., Aspects of ultra-relativistic field theories via flat-space holography, Phys. Lett., B 771, 189, (2017) · Zbl 1372.81136 · doi:10.1016/j.physletb.2017.04.040
[80] Bagchi, A.; Basu, R.; Kakkar, A.; Mehra, A., Flat holography: aspects of the dual field theory, JHEP, 12, 147, (2016) · Zbl 1390.83081 · doi:10.1007/JHEP12(2016)147
[81] E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie), Annales Sci. Ecole Norm. Sup.41 (1924) 1 [INSPIRE] and online pdf version at http://archive.numdam.org/article/ASENS_1924_3_41_1_0.pdf. · Zbl 1348.83039
[82] X. Bekaert and K. Morand, Connections and dynamical trajectories in generalised Newton-Cartan gravity II. An ambient perspective, arXiv:1505.03739 [INSPIRE]. · Zbl 1336.83013
[83] J.B. Griffiths and J. Podolský, Exact space-times in Einstein’s general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2009) [ISBN: 9781139481168] [INSPIRE]. · Zbl 1329.83103
[84] Price, RH; Thorne, KS, Membrane viewpoint on black holes: properties and evolution of the stretched horizon, Phys. Rev., D 33, 915, (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.