×

Topologizations of \(G\)-spaces. (English. Russian original) Zbl 1347.54052

J. Math. Sci., New York 188, No. 2, 77-84 (2013); translation from Ukr. Mat. Visn. 9, No. 3, 308-317 (2012).
Summary: For a \(G\)-space \(X\), we put and explore a question whether \(X\) admits a non-discrete Hausdorff \(G\)-invariant topology.

MSC:

54H11 Topological groups (topological aspects)
22F05 General theory of group and pseudogroup actions
Full Text: DOI

References:

[1] V. I. Arnautov, ”Nondiscrete topologizability of countable rings,” Dokl. Akad. Nauk SSSR, 191, 747–750 (1970). · Zbl 0209.33903
[2] T. Banakh, I. Protasov, and O. Sipacheva, Topologizations of Sets Endowed with an Action of Monoid, preprint available at ArXiv:1112.5729v1. · Zbl 1294.54020
[3] D. Dikranjan and I. Protasov, ”Counting maximal topologies on countable groups and rings,” Topology Appl., 156, 322–325 (2008). · Zbl 1171.54029 · doi:10.1016/j.topol.2008.07.009
[4] D. Dikranjan and D. Shakhmatov, ”The Markov–Zariski topology of an Abelian group,” J. Algebra, 324, No. 6, 1125–1158 (2010). · Zbl 1211.22002 · doi:10.1016/j.jalgebra.2010.04.025
[5] N. Hindman, I. Protasov, and D. Strauss, ”Topologies on S determined by idempotents in {\(\beta\)}S,” Topol. Proceed., 23, 155–190 (1998). · Zbl 0970.54036
[6] A. A. Klyachko and A. V. Trofimov, ”The number of non-solutions of an equation in a group,” J. Group Theory, 8, No. 6, 747–754 (2005). · Zbl 1101.20021
[7] A. A. Markov, ”On unconditionally closed sets,” Mat. Sb., 18, No. 1, 3–28 (1946). · Zbl 0061.04208
[8] J. van Mill, ”A note on Ford example,” Topol. Proceed., 28, 689–694 (2004). · Zbl 1088.54015
[9] S. Morris and V. Obraztsov, ”Nondiscrete topological groups with many discrete subgroups,” Topol. Appl., 84, 103–120 (1998). · Zbl 0933.22003
[10] A. Yu. Ol’shanskii, ”A remark on a countable nontopologized group,” Vest. Mosk. Univ. Ser. I. Mat. Mekh., No. 3, 103 (1980).
[11] A. Yu. Ol’shanskii, The Geometry of Defining Relations in Groups [in Russian], Nauka, Moscow, 1989.
[12] I. V. Protasov, ”Filters and topologies on semigroups,” Mat. Stud., 3, 15–28 (1994). · Zbl 0927.22009
[13] I. V. Protasov, ”Extremal topologies on groups,” Mat. Stud., 15, 9–22 (2001). · Zbl 0989.22003
[14] I. V. Protasov, ”Maximal topologies on groups,” Sib. Math. J., 39, 1368–1381 (1998). · Zbl 0935.22002
[15] I. Protasov and E. Zelenyuk, Topologies on Groups Determined by Sequences, VNTL, Lviv, 1999. · Zbl 0977.54029
[16] S. Shelah, ”On a problem of Kurosh, Jo’nsson groups and applications,” Word Problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), North-Holland, Amsterdam, 1980, pp. 373–394.
[17] A. V. Trofimov, ”A theorem on embedding in nontopologizable groups,” Vest. Mosk. Univ. Ser. I. Mat. Mekh., No. 3, 60–62 (2005). · Zbl 1106.20020
[18] A. V. Trofimov, ”A perfect nontopologizable group,” Vest. Mosk. Univ. Ser. I. Mat. Mekh., No. 1, 7–13 (2007). · Zbl 1164.20011
[19] Y. Zelenyuk, ”On topologizing groups,” J. Group Theory, 10, No. 2, 235–244 (2007). · Zbl 1115.22001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.